7th Annual Flux Congress

August 30 - September 1, 2019

N.A.V

The International Congress for Integrative Developmenta Cognitive Neuroscience New Yorker Hotel New York City, USA www.fluxsociety.org

Program At-A-Glance

	Thursday 29-Aug		Friday 30-Aug		Saturday 31-Aug		Sunday 1-Sep					
8:30 AM	200	nug		Welcome Coffee		Welcome Coffee		Welcome Coffee				
8:45 AM 9:00 AM				Welcome Remarks		8:30am - 9:00am		8:30am - 9:00am				
9:05 AM 9:15 AM 9:15 AM 9:20 AM 9:30 AM 9:30 AM 9:30 AM 9:30 AM 9:55 AM 9:55 AM 10:05 AM 10:16 AM 10:16 AM 10:26 AM				Jacobs Foundation Science Of Learning Symposium 9:15am - 10:30am		Oral Session 2 Prenatal influences on brain development and subsquent behaviour 9:00am - 10:30am		Oral Session 5 New progress in understanding memory development from infancy to childhood 9:00am - 10:30am				
10:30 AM 10:35 AM				Break		Break		Break				
10:40 AM 10:45 AM 10:55 AM 11:05 AM 11:05 AM 11:05 AM 11:05 AM 11:15 AM 11:25 AM 11:25 AM 11:25 AM 11:25 AM 11:35 AM 12:35 PM 12:35 PM	ce Workshop1 ractices for Infant Neuroimaging - 3:30 pm	roscience		10:30am - 10:50am Local Symposium: Translational developmental neuroscience: From transcriptomes to connectomes 10:50am - 12:20pm		10:30am - 10:50am Oral Session 3 Big data and open science: Relevance for developmental cognitive neuroscience 10:50am - 12:30pm	mduc	10:30am - 10:50am Oral Session 6 Early social markers of social competnecy: Translational studies in primates 10:50am - 12:20pm				
12:20 PM 12:25 PM 12:35 PM 12:35 PM 12:40 PM 12:40 PM 12:50 PM 1:00 PM 1:00 PM 1:10 PM 1:13 PM 1:25 PM 1:20 PM 1:20 PM	Pre-Conferen FITNG In: Establishing Best P 8:00 am	Pre-Conference Workshop 2 o: Translating Developmental N 9:00 am - 5:00 pm	n 7:30am-7:00pm	Trainee Dissertation Award Talk Lunch 12:30pm - 1:50pm	n 8:30am-7:00pm	Lunch 12:30pm - 2:00pm	srmation Desk Open 8:30am-5:30p	Lunch 12:20pm - 1:35pm				
1:35 PM 1:40 PM 1:45 PM 1:55 PM 2:00 PM 2:05 PM 2:10 PM 2:15 PM 2:20 PM		P Beyond the Lab	Huttenlocher Lecture 1:50pm - 2:25pm Oral Session 1 NeuroConstruction & the	/Information Desk Ope	Young Investigator Award Talk 2:00pm - 2:30pm	Registration Anfor	Oral Session 7 Computational/predictive coding and development 1:35pm - 2:55pm					
2:25 PM 2:30 PM 2:35 PM 2:40 PM 2:45 PM 2:55 PM 3:00 PM 3:05 PM				Oral Session 1 NeuroConstruction & the	Flash Talks 2:30pm - 3:15pm			Flux Business				
3:10 PM 3:15 PM				Self-organizing brain 2:25pm - 3:55pm	Break 3:15pm - 3:30pm Oral Session 4 Individual differences brain development: Moving beyond the	Break		2:55pm - 3:25pm Student Skills				
3:20 PM 3:25 PM 3:30 PM 3:35 PM 3:40 PM 3:45 PM 3:50 PM						3:15pm - 3:30pm Oral Session 4 Individual differences in		Break 3:25pm - 3:45pm				
3:55 PM 4:00 PM 4:05 PM				Break 3:55pm - 4:15pm		brain development: Moving beyond the		Oral Session 8 The effects of pubertal				
4:15 PM 4:20 PM 4:25 PM 4:30 PM 4:35 PM 4:35 PM 4:45 PM 4:55 PM 5:00 PM								Flash Talks 4:15pm - 5:00pm		average developmental trajectory 3:30pm - 5:00pm		and sex hormones on brain maturation: Current research across different phases of development, and across species 3:45pm - 5:15pm
5:05 PM 5:10 PM 5:15 PM								Closing Ceremony				
3:25 PM 5:35 PM 5:35 PM 5:35 PM 5:40 PM 5:45 PM 5:45 PM 5:55 PM 5:55 PM 5:55 PM 5:55 PM 6:00 PM 6:10 PM 6:17 PM 6:17 PM 6:30 PM 6:33 PM 6:33 PM 6:35 PM 6:35 PM				Poster Session 5:00pm - 7:00pm		Poster Session 5:00pm - 7:00pm		5:15pm - 5:30pm				
Scio PM Scio PM Violo PM Stop PM	Student and Researche Meet at the entra Lii	Early Career rs Evening ance to the High ne		"program is subject to slipht changes		Flux Fun Night Boat Basin Café 7:00pm - 10:00pm						

Flux Awards

Huttenlocher Lecturer Award

This award is presented to an outstanding researcher in the field of Developmental Cognitive Neuroscience.

2019 Awardee: **BJ Casey** | Fundamentals of the Adolescent Brain (FAB) Lab, Yale University -The Rockefeller University

Dr. BJ Casey is a Professor of Psychology and Director of the Fundamentals of the Adolescent Brain (FAB) Lab at Yale University and Visiting Scientist at The Rockefeller University. Casey pioneered the use of functional magnetic resonance imaging to examine typical and atypical human brain development in the early 1990s and is a world leader in the field of developmental neuroscience. She has received international acclaim for her empirical and theoretical work on the adolescent brain. Her discoveries have provided new insights as to why young people respond to the world in unique ways that have important implications for justice reform.

Young Investigator Award Supported by the Kennedy Krieger Institute

The Young Investigator Award in Cognitive Neuroscience recognizes outstanding contributions by scientists early in their careers. Award recipients have been working in the area of cognitive neuroscience for no more than 10 years involved in active independent research.

Kennedy Krieger Institute KennedyKrieger.org

Eva Telzer is an Associate Professor of Psychology and Neuroscience at UNC Chapel Hill. She received her Ph.D. in Developmental Psychology from UCLA in 2012. Her research examines how social and cultural processes shape adolescent brain development, with a focus on both prosocial and risk-taking behaviors, family and peer relationships, and long-term psychological well-being. She has authored over 100 publications, and has received numerous awards for her work, including a NARSAD Young Investigator Grant, a Jacobs Foundation Early Career Research Fellowship, an Early Career Award from the Society for Research on Adolescence, the Boyd McCandless Award for Early Career Contribution to Developmental Psychology from the American Psychological Association Division 7, and was named a Rising Star by the Association for Psychological Science. Her research is supported by the National Science Foundation, Brain and Behavior Research Foundation, National Institute of Drug Abuse, and National Institute of Mental Health. In her free time she enjoys drawing biological illustrations, hiking with her dog, and reading.

Flux Dissertation Award *New for 2019* Sponsored by the Bezos Family Foundation

Flux is pleased to announce the establishment of the Flux Student Dissertation Award, which recognizes an exceptional, rigorous, and meticulous dissertation by one of the Congress' trainee members.

2019 Awardee: Katie Insel | Columbia University Zuckerman Institute

Katie received her PhD in Psychology from Harvard University's Cognition, Brain, and Behavior program. During graduate school, she worked in Professor Leah Somerville's Affective Neuroscience and Development Lab in the Department of Psychology and Center for Brain Science. Katie's research examines how adolescent neurodevelopment shapes goal-directed behavior. To answer these questions, her research employs a combination of behavioral, computational, and neuroimaging methods. She is particularly interested in identifying how individuals use incentives to motivate behavior and adjust cognitive effort, and how this ability changes with age during adolescence. Specifically, she investigates how maturing functional brain systems support the integration of motivation and cognition during learning and cognitive control. While most of her work focuses on normative development, she also examines whether adolescents with depression exhibit unique brain and behavioral profiles. This fall, Katie will begin a postdoctoral fellowship working with Professor Daphna Shohamy at Columbia University's Zuckerman Institute. During her postdoctoral training, she plans to study how the multiple brain systems that support learning and memory functionally mature during adolescence. In addition to conducting research, Katie is committed to scientific outreach, and she has worked with educators, legal scholars, and clinicians to help translate basic science to inform real world applications.

Program Contents

About the Flux Congress

The aim of the congress is to provide a forum for developmental cognitive neuroscientists to share their findings on the development of brain processes that support cognition and motivation from an integrative neuroscience perspective. Thus, it provides an opportunity for scientists in the field to expand their knowledge base, and also be better informed of translational approaches.

The Flux Society was launched in June 2014, and has seen growth in its membership each year. To learn more about the Flux Society, please visit **www.fluxsociety.org.**

- Inside front Flux Congress 2019 Program at-a-glance
 - **1** Flux Awards
 - **2** About FLUX
 - **3** Welcome Letter
 - 6 FLUX Leadership
 - 7 General Congress Information
 - 8 Flux Social Functions
 - **9-10** Congress Venue Floor Plan
- **11-16** Flux Congress Program Schedule
- **17-28** Flux Congress Science of Learning Oral Presentations
- **29-30** Flux Congress Poster Floor Plans
- **31-38** Flux Congress Poster Author Index
- **39-54** Flux Congress Posters, Titles, Authors and Affiliations
- **55-57** Flux Congress Sponsors & Exhibitors
 - **58** Sponsor thank you

Welcome to Flux Congress attendees

Greetings from the Flux Local Host, Program and Board committees! We are excited to bring to New York City a set of diverse speakers that span many important areas in our field. We focused this year's program on "cutting edge approaches to developmental neuroscience". Examples include the "NeuroConstruction & the selforganizing brain," "Big data and open science" and "Individual differences in brain development: Moving beyond the average developmental trajectory" sessions, amongst many others. We will continue to have a presentation by our Young Investigator Awardee plus FlashTalk sessions, which will highlight hot topics and young investigators in Developmental Neuroscience. We have worked hard to bring you a diversity of topics, speakers, and session types, and we think that the outstanding science to be presented at Flux will generate lively and productive debates and discussions. These presentations, along with the 266 posters to be presented at this year's meeting, should make for a stimulating and engaging conference. We are also honored to feature **Dr. BJ Casev** at the **Huttenlocher Lecture**, who helped to start the field of developmental cognitive neuroscience and who has mentored so many of the luminaries in our field.

New this year: We have assembled a Trainee Representatives committee, which includes Michelle Achterberg (Leiden University), Alexandra Cohen (NYU), Meriah DeJoseph (UMN), Mollie Marr (OHSU), Jaio Guassi Moreira (UCLA), Kate Nussenbaum (NYU), and Diego Placido (Brown University). This committee has been hard at work implementing many new initiatives, including social media outreach, highlighting "**Trainee of the Month**" releases, starting the Trainee Ideas Exchange, and creating the innagural **Flux Dissertation Award**.

In addition to our excellent scientific program, this year's Flux Congress excursion will be held at Boat Basin Café located in Riverside Park at the end of 79th Street, where beautiful views and great food and drinks can be had by all! Please join us for a New York City experience as part of Flux 2019!

In addition, we will have two **pre-conference workshops** to provide additional avenues for learning and discussion. *"FIT'NG In: Establishing Best Practices for Infant Neuroimaging"* will feature a range of experts in infant neuroimaging who will share their knowledge and expertise for others who may want to learn such approaches or who are already doing infant neuroimaging and want to share tips. The other workshop is *"Beyond the lab: Translating developmental neuroscience,"* which will focus on effective approaches for communicating our science to the broader lay community, such an important skill for researchers at all stages of their careers.

New York City - it needs no introduction!

We usually include a description of the city location for Flux, but New York City needs no introduction! It has something for everyone and is home to great art, food, outdoor spaces, indoor spaces, music, theater, science, and anything else you could want. We hope that Flux attendees are able to take advantage of all that the "Big Apple" has to offer.

Flux Congress Venue: The New Yorker

Our host hotel, the aptly named "The New Yorker" is conveniently located in midtown Manhattan. It is walking distance to so many great New York City attractions, including Central Park, the theater district, Radio City Music Hall, MOMA and Rockefeller Center, with easy access to multiple subway lines to take you around the city.

We also wish to thank all of the wonderful sponsors who are helping to make FLUX possible this year, including the Jacobs Foundation, the Bezos Family Foundation, Columbia University Departments of Psychiatry and Psychology, Weill Cornell Department of Psychiatry, Kennedy Krieger Institute, Mount Sinai Adolescent Health Center, NYU Langone Health, Montefiore Medical Center, the Developmental Cognitive Neuroscience journal, Brain Vision LLC, NIRx Medical Technologies, LLC, and the NY Presbyterian Youth Anxiety Clinic.

We look forward to this exciting and engaging meeting and to stimulating discussions with all of the wonderful Flux Congress attendees.

Sincerely,

Deanna Barch

Flux Congress Program Chair

Nim Tottenham

Flux Congress Local Organizing Committee Chair

Moriah Thomason Xavier Castellanos Adrianna DiMartino Bruce McEwen Rita Goldstein Michael Milham Francis Lee Flux Congress Local Organizing Committee

Welcome to the seventh meeting of Flux

Welcome to our 7th meeting of Flux: The Society for Developmental Cognitive Neuroscience, in the Big Apple NYC!

Membership to the Flux Society keeps increasing, with over **400 members**.

We are very thankful for being hosted by leaders in the field in NYC including our Host Chair **Nim Tottenham** (Columbia University) and her host committee made up of: Xavier Castellanos (NYU), Adriana DiMartino (Child Mind Institute), Rita Goldstein (Mt. Sinai), Michael Milham (Child Mind Institute), Moriah Thomason (NYU), Bruce McEwen (Rockefeller University), and Francis Lee (Weill Cornell Medical College). They did an amazing job in securing the funding and the logistics in making an NYC meeting possible.

Importantly, they organized the **Flux Fun Night** on Saturday, August 31 on the open air patio of the iconic summertime party spot the **Boat Basin Café** - Located in Riverside Park at the end of 79th Street on the Hudson River which overlooks the Marina and the Hudson River with breathtaking views of the sunsets over New Jersey.

A big thank you to the **Program Chair Deanna Barch** (Wash U) and her program committee including: Daniel Ansari (University of Western Ontario), Jocelyne Bachevalier (Emory), Gregoire Borst (Université Paris-Sorbonne), Christos Constantinidis (Wake Forest University), Sean Deoni (Brown University), Iroise Dumontheil (BirkBeck, University of London), Damien Fair (OHSU), Catherine Hartley (NYU), Jiska Peper (Leiden University), and Linda Wilbrecht (Berkeley) for ensuring a remarkable scientific program.

The program committee organized a total of 53 talks including invited and selected Symposiums, Award talks, Flash talks as well as 273 Posters. This year we opened symposium submissions and received a large number of extremely competitive symposiums that we hope to see again as well as new ones for consideration in upcoming years.

We have a prestigious set of awards that we continue to grow!

The **2019 Huttenlocher Awardee is BJ Casey (Yale University)** in recognition of her pioneering efforts playing a major role in establishing the field of Developmental Cognitive Neuroscience by performing impactful scientific work, promoting our area of study, and training many of the leaders in the field. BJ will open the meeting sharing with us her unique vision of the field of DCN.

Eva Telzer (University of North Carolina, Chapel Hill) is this year's **Young Investigator Awardee**, who was selected from a highly competitive set of candidates, for her outstanding and highly productive work characterizing how experience, culture, and motivational context affect neurobehavioral development into adulthood of decision making, social interactions, and emotion regulation. We thank the **Kennedy Krieger Institute** for supporting the YIA!

We continue to be grateful for the support from the Jacobs Foundation enabling us to enhance our scientific aims, including supporting the Jacobs Science of Learning Synposium (SOL) and Student Travel Awards. We were thrilled to have awarded 4 International student travel awards and 12 local travel awards along with 3 Awards for SOL speakers. Thank you to Bruce McCandliss (Stanford University) for leading this effort.

We are also thankful to **Elsevier** for their continued significant support of Flux and, importantly, publishing **Developmental Cognitive Neuroscience**, the Official journal of Flux.

NEW The first Flux 2019 Dissertation Award was awarded to Katie Insel (Harvard University – Mentor: Leah Somerville) for her outstanding dissertation entitled 'Neurodevelopmental shifts in goal directed behavior across adolescence'

NEW Now that we are a bonafide Society we will start holding a **Business Meeting** for Regular Members, where we will report on the status of the society and open for feedback and discussion on plans going forward. This will take place on Sunday, September 1 at 2:55pm.

NEW At the urging of Nim Tottenham, the next generation has come together and formed a Flux Student Group including Michelle Achterberg (Leiden University), Alexandra Cohen (NYU), Meriah DeJoseph (UMN), Mollie Marr (OHSU), Jaio Guassi Moreira (UCLA), Kate Nussenbaum (NYU), and Diego Placido (Brown University)! In addition to taking over our social media,they have organized a Student and Early Career Researcher Evening on Thursday, August 29 at 7:00pm. In addition, they also organized a **Student Skills** Exchange, an event for students, by students, to help strengthen their knowledge base.

We want to thank founding members of the Fetal, Infant, Toddler Neuroimaging Group Alice Graham, Dusting Scheinost, Marisa Spann and Lilla Zolleifor organizing this year's preconference **FIT'NG In: Establishing Best** **Practices for Infant Neuroimaging** (Supported by Biolmage Suite, OHSU School of Medicine, and The Nathaniel Wharton Fund) and **Flux Translational Science Pre-Conference Workshop - Beyond the lab: Translating developmental neuroscience** (Supported by Hopelab and Bezos Family Foundation), organized by Natasha Duell, Lucia Magis-Weinberg, and Jenn Pfeifer

Finally, Karaoke will take place as an informal gathering of those inclined to celebrate in this fashion. Anthony Dick found a great spot at Karaoke City after the Flux Fun Night.

We also want to give a special thank you to **Podium Conference Specialists Marischal DeArmond and especially Pam Prewett** who have worked tirelessly organizing every detail and supporting the effective execution of our conference.

Finally, a warm thank you to the **members of the Flux society** and conference participants for making the time to attend the Flux conference and making it such an exciting event! Welcome new Fluxers and a special thank you to those who have been supporting Flux through its maturation, your contributions are noted and greatly appreciated!

A reminder of the bond that brings us together is that "Flux" is not an acronym but rather a term used to highlight that, as developmental cognitive neuroscientists, we are distinct in our investigations of the dynamic nature of cognition through development as stated in the aim of the Flux society "To advance the understanding of human brain development by serving as a forum for professional and student scientists, physicians, and educators to: exchange information and educate the next generation of developmental cognitive neuroscience researchers; make widely available scientific research findings on brain development; encourage translational research to clinical populations; promote public information by discussing implications on the fields of education, health, juvenile law, parenting, and mental health, and encourage further progress in the field of developmental cognitive neuroscience."

The Flux Society strives to support Flux meetings going forward, but also to expand our ability to provide venues for scientific discussion and translational application.

We want to remind you of our ever growing **job bank** where there are postings for every level of career development for those looking for a position and those looking to hire.

Finally, we are delighted to invite you to plan on attending Flux 8, September 10th-13th, in Santa Rosa, CA – Wine Country - hosted by Bruce McCandliss (Stanford University) and the host committee including: Russ Poldrack (Stanford), Linda Wilbrecht (Berkeley), Ronald Dahl (Berkeley), Kaustubh Supekar (Stanford) and Weidong Cai (Stanford). The scientific program will be chaired by Jenn Pfeiffer (University of Oregon) with what promises to be an outstanding invited Program Committee.

We are looking forward to expanding our understanding of developmental cognitive neuroscience and interacting with attendees and are confident that you will leave with greater understanding, new friends, and enhanced creativity in your approach.

Sincererly,

Beatriz Luna President

Brad Schlaggar Vice-President

Damien Fair Executive Treasurer

Eveline Crone Executive Board Member

Bruce McCandliss Board Member

Nim Tottenham Board Member

THE SOCIETY FOR DEVELOPMENTAL COGNITIVE NEUROSCIENC

Flux Leadership

Society Executive Committee

Beatriz Luna President	University of Pittsburgh, USA
Brad Schlaggar Vice President	Kennedy Krieger Institute, USA
Bruce McCandliss Executive Treasurer	Stanford University, USA
Eveline Crone	Leiden University, Netherlands
Damien Fair	Oregon Health & Science University, USA
Nim Tottenham	Columbia University, USA

Congress Scientific Program Committee

Washington University in St. Louis
Oregon Health & Science University
Leiden University
University of Western Ontario
Université Paris-Sorbonne
New York University
Brown University
Wake Forest University
Emory University
University of California, Berkeley
Birkbeck, University of London

Congress Local Host Committee

Nim Tottenham, Chair	Columbia University
Moriah Thomason	New York University
Xavier Castellanos	New York University
Michael Millham	Child Mind Institute
Rita Goldstein	Mount Sinai Institute
Adrianna DiMartino	Child Mind Institute
Bruce McEwen	The Rockefeller University
Francis Lee	Weill Cornell Medical College

Congress Local Host Committee Podium Conference Specialists

Marischal De Armond Pam Prewett

General Congress Information

Meeting Venue

The New Yorker Hotel 481 8th Ave New York, NY 10001 USA Tel: +1 212-971-0101

All congress sessions will take place at this location, and the Flux Fun Night will take place at an offsite venue.

Registration

Congress registration fees include access to all sessions including, speaker presentations, coffee breaks, and poster sessions.

Name Badges

Your name badge is your admission ticket to all conference sessions and coffee breaks. Please wear it at all times. At the end of the conference we ask that you recycle your name badge at one of the name badge recycling stations, or leave it at the Registration Desk.

Registration and Information Desk Hours

The Registration and Information Desk, located on the Mezzanine, will be open during the following dates and times:

 Thursday, August 29
 8:00AM - 10:00AM

 Friday, August 30
 8:00AM - 7:00PM

 Saturday, August 31
 8:00AM - 7:00PM

 Sunday, September 1
 8:00AM - 5:30PM

If you need assistance during the meeting, please visit the Registration Desk.

Staff

Congress staff from Podium Conference Specialists can be identified by orange ribbons on their name badges. For immediate assistance, please visit us at the registration desk on the mezzanine.

Complimentary WIFI Information:

Complimentary Wifi is available during the conference.

Network: Flux Congress

Code: flux2019

Flux Fun Night

This year's Flux excursion will take place at the **Boat Basin Cafe** located at W 79th Street, New York. Advance ticket purchase is required for this event. The Boat Basin Cafe is a 20-minute subway trip from The New Yorker Hotel. A subway token for transport to the restaurant is included with your ticket.

Poster Information

Set-Up / Removal

There are two Poster Sessions during the Meeting and posters have been allocated to one of the sessions based on poster themes. Poster presenters must set-up and remove their posters during the following times.

Poster Session 1 - Friday, August 30

Poster Set-up: Friday, August 30: 7:30 – 8:30AM

Poster Hours:

5:00 - 7:00PM - Poster Session

Removal of all posters by: 8:00pm on August 30

Poster Session 2 - Saturday, August 31

Poster Set- up: Saturday, August 31: 7:30 – 8:30AM Poster Hours: 5:00 – 7:00PM – Poster Session

Removal of all posters by: 8:00pm on August 31

Flux Social Functions

Flux Fun Night

Saturday, August 31 | 7:00pm

This year's Flux excursion will take place at the **79th Street Boat Basin Cafe** located at W 79th Street, New York. Advance ticket purchase is required for this event. The Boat Basin Cafe is a 20-minute subway trip from The New Yorker Hotel. A subway token for transport to the restaurant is included with your ticket and we encourage you to "go local"! *Please note your subway card is valid for two rides on the NYC subway.*

This event is casual and will include a buffet meal. A cash bar will also be available. See map for directions.

Student and Early Career Researchers Evening

Thursday, August 27

The Flux Trainee Committee is pleased to announce a Student and Early Career Researchers Evening! On August 27, we will meet up at the Highline at 6:00pm and walk towards Chelsea market to get something to eat (dinner on own dime).

Flux - The New Yorker Hotel, 481 8th Avenue

CLICK HERE TO SEE THE FULL MAP

The High Line, 515 W 23rd Street

https://www.google.com/maps/d/viewer?mid=1yPj-a6gbxejtEvfOuwW30b6es8SHQP-I&II=40.7657053252209%2C-73.98359189720736&z=15

Congress Venue Floor Plan - 2nd Floor

Congress Venue Floor Plan - 3rd Floor

Day 1 Friday, August 30

8:30-8:55AM	Coffee
8:55 - 9:10AM	Welcome Comments Beatriz Luna University of Pittsburgh, USA Deanna Barch Washington University in St Louis, USA Nim Tottenham Columbia University USA
	Science of Learning Symposium Chair: Bruce McCandliss Stanford University, USA Sponsored by Jacobs Foundation
9:10 - 9:30AM	Magnetoencephalographic signatures of hierarchical rule learning in newborns Julia Moser University of Tübingen, Germany
9:30 - 9:50AM	Cortical plasticity associated with a parent-implemented language intervention Rachel Romeo MIT & Boston Children's Hospital, USA
9:50 - 10:10am	Dynamic neural correlates of fear conditioning in children exposed to trauma and associations with psychopathology Stephanie DeCross Harvard University, USA
10:10 – 10:30AM	Q&A
10:30 - 10:50AM	Break
	Local Symposium - NeuroConstruction & the self-organizing brain Chair: Nim Tottenham Columbia University, USA
10:50 - 11:10AM	Perinatal interference with the serotonergic system affects VTA function in the adult via glutamatergic co-release Catia Teixeira Nathan Kline Institute, USA
11:10 - 11:30am	Molecular mechanisms of episodic learning and memory in early development Christina Alberini New York University, USA
11:30 - 11:50AM	Brain injury at birth disrupts the development of dopamine and working memory networks in humans Sean Froudist-Walsh New York University, USA
11:50AM - 12:10PM	Learning how to remember Chris Baldessano Columbia University, USA
12:10 – 12:20PM	Q&A
	Trainee Dissertation Award Presentation Chair: Bea Luna University of Pittsburgh, USA Sponsored by the Bezos Family Foundation
12:20 - 12:30PM	Brain and behavioral asymmetries for gain and loss learning emerge with age during adolescence Katie Insel Harvard University, USA
12:30 - 1:50pm	Lunch (on own)
	Huttenlocher Lecture Chair: Deanna Barch Washington University in St. Louis, USA
1:50 - 2:25PM	Developmental cognitive neuroscience: We've come a long way, baby, or have we? BJ Casey Yale University, USA

	Local Session: - Translational developmental neuroscience: From transcriptomes to connectomes Chair: Francis Lee New York Presbyterian/Weill Cornell Medical Center, USA
2:25 - 2:50PM	Epigenetic signature in CA3 neurons associated with altered stress reactivity in mice subjected to early-life stress Jordan Marrocco The Rockefeller University, USA
2:50 - 3:15PM	Title to come Conor Liston Cornell Medical, USA
3:15 - 3:40PM	Subcortical brain structure and function in youth with depression or familial risk David Pagliaccio Columbia University, USA
3:40-3:55PM	Q&A
3:55 - 4:15PM	Break
	Flash Talks Chair: Kate Hartley New York University, USA
4:15 - 4:20PM	The neural correlates of giving under different social contexts in adolescence Suzanne van de Groep Leiden University, The Netherlands
4:20 - 4:25PM	Perseverance in adolescents and young adults is related to neural response to performance feedback Sarah Tashjian University of California, Los Angeles, USA
4:25 - 4:30PM	Neighborhood racial demographics predict infants' motor system activation toward r acial out-group individuals
	Hyesung Grace Hwang University of Chicago, USA
4:30 - 4:35PM	Individual variation in fronto-parietal control network topography supports executive function in youth Zaixu Cui University of Pennsylvania, USA
4:35 - 4:40pm	Neural correlates of self-evaluation during puberty Marjolein Barendse University of Melbourne / University of Oregon, USA
4:40 - 4:45PM	Executive functions in reading: impairment and plasticity in children with and without dyslexia Tzipi Horowitz-Kraus Technion and Cincinnati Children's Hospital, USA
4:45 - 4:50PM	Two patterns of atypical development involving distinct functional networks in Tourette syndrome Ashley Nielsen Washington University in St. Louis, USA
4:50 - 4:55PM	Neural mechanisms of digit processing in kindergartners: An fMRI study Benjamin Conrad Vanderbilt University, USA
4:55 - 5:00PM	Response time variability is associated with more current and future negative life outcomes in children Ana Cubillo University of Zurich. Switzerland
5:00 - 7:00PM	Poster Session 1

Day 2 Saturday, August 31

	Oral Session 2 - Prenatal influences on brain development and subsequent behaviour Chair: Alice Graham Oregon Health & Science University, USA
9:00-9:20AM	Fetal programming of brain development – Role of maternal-placental-fetal stress biology Claudia Buss Charité Universitätsmedizin Berlin, Germany
9:20 - 9:40AM	Maternal metabolic and dietary environmental influences on offspring behavior Elinor Sullivan Oregon Health and Science University, USA
9:40-10:00AM	Aberrant structural and functional connectivity underlies neurodevelopmental impairment and psychopathology in preterm children Cynthia Rogers Washington University, USA
10:00 - 10:20AM	Aberrant structural and functional connectivity underlies neurodevelopmental impairment and psychopathology in preterm children Chris Smyser Washington University, USA
10:20 - 10:30AM	Q & A
10:30 - 10:50AM	Break
	Oral Session 3: Big data and open science: Relevance for developmental cognitive neuroscience Chair: Damien Fair Oregon Health & Science University, USA
10:50 - 11:15AM	Large-scale, open neuroimaging datasets are increasing more than just sample size Mike Milham Child Mind Institute, USA
11:15 - 11:40am	Improving practices and inferences in developmental cognitive neuroscience: Open science tools for research design, analysis, and publication Jenn Pfeiffer University of Oregon, USA
11:40am - 12:05pm	Opportunities and challenges of sharing and pooling data from existing longitudinal neuroimaging cohorts Kathrine Skak Madsen Danish Research Centre for Magnetic Resonance, Denmark
12:05-12:30PM	Q&A
12:30 - 2:00PM	Lunch (on own)
	Young Investigator Award Lecture Chair: Brad Schlaggar Kennedy Krieger Institute, USA Supported by Kennedy Krieger Institute
2:00 - 2:30pm	For better or for worse?: Neurobiological sensitivity to social context Eva Telzer University of North Carolina at Chapel Hill, USA
	Flash Talks Chair: Jess Church University of Texas at Austin, USA
2:30 - 2:35PM	Peers exert a stronger prosocial than antisocial influence on adolescent attitudes: Evidence from brain and behavior Kathy Do University of North Carolina, Chapel Hill, USA

2:35 - 2:40pm	Hippocampal multivoxel encoding signatures predict long-term memory across middle childhood and adolescence in humans. Bridget Callaghan Columbia University, USA
2:40 - 2:45PM	The role of toddler myelination in preschool executive function development Lourdes Delgado Reyes University of East Anglia, UK
2:45 - 2:50PM	The moderating role of socioeconomic status on relations between level of responsibility and cortical thinning during adolescence Giorgia Picci The Pennsylvania State University, USA
2:50 - 2:55PM	Using fNIRS and Galvanic Skin Response as a novel approach to infer Limbic-Prefrontal processes in early childhood Adam Grabell University of Massachusetts, USA
2:55 - 3:00pm	Higher quality neural representations of phonemes scaffold longitudinal reading gains in 5- to 7-year-old children Jin Wang Vanderbilt University, USA
3:00 - 3:05PM	Unique effects of age and pubertal development on amygdala-PFC connectivity during face processing Arianna Gard University of Michigan, USA
3:05 - 3:10PM	Striatal dopamine contributions to the development of frontostriatal connectivity in a reward learning context Ashley Parr University of Pittsburgh, USA
3:10 - 3:15PM	Predicting vulnerability to risk behaviors in a large cohort of children Kristina Rapuano Yale University, USA
3:15 - 3:30PM	Break
	Oral Session 4: Individual differences in brain development: Moving beyond the average developmental trajectory Chair: Angie Laird Florida International University, USA
3:30 - 3:55PM	Moving beyond the mean level: A longitudinal study examining individual differences in social brain developmental trajectories Andrik Becht Leiden University, The Netherlands
3:55 - 4:20PM	Modelling the dynamics of brain structure and cognitive development Rogier Kievit University of Cambridge, UK
4:20 - 4:45PM	The strategic adolescent brain: functional brain organization during adolescence relates to behavioral strategies Kate Mills University of Oregon, USA
4:45 - 5:00PM	Q&A
5:00 - 7:00PM	Poster Session 2
7:30 - 10:00PM	Flux Fun Night at the Boat Basin Café . See General Information section and the map on page 8

Day 3 Sunday, September 1

	Oral Session 5: New progress in understanding memory development from infancy to childhood Chair: Sarah Durston University Medical Centre Utrecht, The Netherlands
9:00-9:20AM	Functional brain imaging of learning and memory in human infants Nicholas Turk-Browne Yale University, USA
9:20-9:40am	The what, where, and when of memory in toddlers: Behavioral and neural evidence Simona Ghetti University of California, Davis, USA
9:40 - 10:00am	The binding of space and time in episodic memory Sang Ah Lee Korea Advanced Institute of Science and Technology, Korea
10:00-10:20AM	Development of holistic episodic recollection Zoë Ngo Temple University, USA
10:20 - 10:30AM	Q&A
10:30 - 10:50AM	Break
	Oral Session 6: Early social markers of social competency: Translational studies in primates Chair: Jocelyne Bachevalier Emory University, USA
10:50 - 11:15AM	Early mother-infant interactions and social development in rhesus monkeys Amanda Dettmer Yale University, USA
11:15 - 11:40AM	Early social experience, genetic influences and epigenetic regulation in the developing social brain Pier Francesco Ferrari Univeristà di Parma, Italy
11:40am - 12:05pm	Development of macaque face visual processing using combined eye-tracking and MRI: in search of nonhuman primate models of social deficits of relevance to Autism Mar Sanchez Emory University, USA
12:05-12:20PM	Q&A
12:20 - 1:35PM	Lunch (on own)
	Oral Session 7: Computational/predictive coding and development Chair: Gregoire Borst Université Paris-Sorbonne, France
1:35 - 1:55PM	The promise and challenges of using fNIRS to study predictive mechanisms in human infants Richard Aslin Yale University, USA
1:55 - 2:15PM	Predictive "EN"-coding: How prior beliefs influence preschooler's memory Elizabeth Bonawitz Rutgers University - Newark, USA
2:15 - 2:35PM	Deep predictive learning in the neocortex and pulvinar Randy O'Reilly Colorado University, USA
2:35 - 2:55PM	Q&A
2:55 - 3:25PM	Flux Business Meeting
3:00 - 3:45PM	Student Skills Exchange

3:25 - 3:45PM	Break
	Oral Session 8: The effects of pubertal and sex hormones on brain maturation: Current research across different phases of development, and across species Chair: Deanna Barch Washington University, USA
3:45 - 4:05PM	Androgens and structurally distinct amygdala subregion development in children and adolescents Megan Herting University of Southern California, USA
1.05 - 1.25 DM	Pubortal bormonos prodict sox-specific trajectorios of nituitary gland volume during
4.05 - 4.25PM	the transition from childhood to adolescence
	Sarah Whittle University of Melbourne, Australia
4:25 - 4:45PM	Prenatal masculinization of the auditory system in infants: the MIREC-ID study
	Tuong-Vi Nguyen McGill University, Canada
4:45 - 5:05PM	Cortical reorganization during adolescence: what the rat can tell us about the cellular basis
	Janice Juraska University of Illinois, USA
5:05 - 5:15PM	Q&A
5:15 - 5:30PM	Closing & Awards

WE SPECIALIZE IN Scientific, Academic & Research Societies and their Conferences

Need help managing your Conference or Association?

Day 1 Friday, August 30

Jacobs Foundation Science of Learning Symposium

Chair: Bruce McCandliss Stanford University, USA

Julia Moser fMEG-Center/Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Germany

Magnetoencephalographic signatures of hierarchical rule learning in newborns

Fetal magnetoencephalography (fMEG) allows to non-invasively measure fetal and neonatal brain activity. With fMEG, auditory event-related responses to tones as well as auditory mismatch responses can be reliably recorded in the last trimester of pregnancy as well as shortly after birth, which demonstrates auditory discrimination on a neuronal level. To differentiate conscious perception and learning from automated sensory processing, a complex - hierarchical - oddball paradigm was used. The auditory "local-global" mismatch paradigm establishes a global rule, whose violation causes a global mismatch response, in addition to the mismatch response caused by a local oddball. After an initial rule-learning phase, this globally deviant sequence appears in one fourth of trials. Depending on the rule, the local oddball can be within either the standard or the deviant sequence. The sequence without oddball can be standard or global deviant respectively. All subjects were stimulated with both rules, resulting in four stimulus conditions. fMEG measurements were performed in 21 newborns between 13 and 55 days (M=31). Stimuli were sequences of 500Hz as well as 750Hz tones. Newborns showed mismatch responses towards local as well as global rule violations. The local oddball within the globally deviating sequence elicited the strongest mismatch response. A weaker mismatch response was observed for the oddball within the standard sequence. Comparison of both sequences with or without oddball (role of global standard or deviant) revealed in both cases an early and a late global mismatch response (peaking at 350ms & 1010ms; 380ms & 920ms respectively). These findings give a strong indication for learning of the presented rule. Within the framework of the "local-global" paradigm, learning of the global rule is seen as a neuronal correlate of conscious processing. Investigating this correlate can be a valuable contribution to the research on early cognitive development.

Rachel Romeo MIT & Boston Children's Hospital, USA **Cortical plasticity associated with a parent-implemented language intervention**

Objective: Children's early language experiences, including high quality parent-child interactions, are related to their linguistic, cognitive, and academic development, as well as their brain structure and function (Romeo et al., 2018). On average, children from lower socioeconomic status (SES) backgrounds receive reduced language exposure, and several parent-implemented interventions have resulted in both improved home language environments as well as increases in children's language skills (e.g., Leech et al., 2018). However, the neuroplastic mechanisms underlying these changes are yet unknown. Methods: One hundred lower-SES 4-to-6 yearold children and their primary caregivers were randomly assigned to either a 9-week family-based intervention focused on enhancing children's communication, executive functioning, and school readiness skills or a no-contact control group. Children completed pre and post assessments of verbal and nonverbal cognition, and subsets of each participant group additionally completed LENA home language recording and structural neuroimaging, from which longitudinal cortical thickness changes were calculated using Freesurfer. Results: Controlling for baseline measures, families who completed the intervention exhibited significantly increased adult-child conversational turns. The magnitude of turn-taking change was positively correlated with increases in children's language scores, and was also positively correlated to cortical thickening in language-related left inferior frontal regions, as well as social-related right supramarginal regions. Conclusions: This is the first study to investigate neural mechanisms underlying perturbations to children's language environments. Results suggest that parent-implemented language interventions may improve children's language skills via cortical plasticity in canonical language and social regions during development. This has implications for social and educational policies for early intervention.

Stephanie DeCross Harvard University, USA

Dynamic neural correlates of fear conditioning in children exposed to trauma and associations with psychopathology Objective: One potential mechanism linking childhood trauma (CT) exposure to psychopathology is fear learning, a phenomenon that is well understood in adult but not developmental populations. This study aims to describe how the neural correlates of fear learning unfold over time in children, as well as how CT may disrupt patterns of neural response in ways that contribute to psychopathology. Methods: 147 children (aged 8-16 years) with and without exposure to CT underwent a differential fear conditioning procedure during an fMRI scan. Dynamic patterns of learning were examined in voxel-wise parametric modulation analyses and region-of-interest analyses, and functional connectivity was assessed with whole-brain task-based connectivity analyses. Multiple regression was used to examine associations with psychopathology symptoms. Results: In children, canonical salience network regions (including amygdala, insula, anterior cingulate cortex) were active to the CS+ relative to CS- and exhibited habituation across learning blocks. Default mode network regions (including hippocampus, frontal pole, vmPFC, and posterior cingulate cortex) were active to CS- relative to CS+, and increased activation across learning blocks. Children with CT display blunted habituation to CS+>CS- in right amygdala and insula and smaller increases in right hippocampus and frontal pole to CS->CS+. Additionally, children with CT showed greater functional connectivity of amygdala with fronto-parietal regions associated with attention direction and initiation of defensive responses to CS+>CS-, and less amygdala-hippocampus connectivity. Patterns of altered dynamic neural response were associated with depression, generalized anxiety, and externalizing symptoms. Conclusions: Alterations in fear learning processes and the dynamic communication between salience network and default mode network regions may be a key mechanism underlying the link between CT and psychopathology.

Local Symposium: NeuroConstruction and the self-organizing brain

Chair: Nim Tottenham Columbia University, USA

Catia Teixeira Nathan Kline Institute, USA

Perinatal interference with the serotonergic system affects VTA function in the adult via glutamatergic co-release

Serotonin and dopamine are neurotransmitters associated with multiple psychiatric disorders. However, how they interact during development to affect subsequent behavior remains relatively unknown. Here I will present work from my laboratory showing how changes in serotonin levels during early-life, induced by exposure to antidepressants, alter dopaminergic function and behavior later in life.

Christina Alberini New York University, USA

Molecular mechanisms of episodic learning and memory in early development

Infantile episodic experiences are rapidly forgotten; nonetheless, they profoundly affect the brain's functions and physiology throughout life. In agreement, recent studies in rodents showed that memories formed in infancy are not lost, but instead are stored long-term in latent forms. Molecular and behavioral characterization of hippocampus-dependent memories in rats and mice led us to suggest that they undergo a developmental critical period. I will discuss new findings revealing that, during this period, learning produces a significant maturation at the cellular, synaptic and behavioral levels. This maturation appears to be selective for the type of experience encountered.

Sean Froudist-Walsh New York University, USA

Brain injury at birth disrupts the development of dopamine and working memory networks in humans

Working memory requires dopamine. In rodents, damage to the hippocampus at birth affects dopamine function and working memory in later life. Similar studies in humans have been lacking. I first present results from a longitudinal study of people who had brain injury at birth. Their hippocampal damage correlates with reduced presynaptic dopamine function in adulthood. However, compensatory cortical activity may reduce working memory deficits. Next, I present a new large-scale computational model. We find that increases in cortical dopamine in development can lead to less distractible working memory. Together, this shows how specific developmental changes can impact working memory ability.

Chris Baldessano Columbia University, USA

Learning how to remember

Building memories of realistic experiences in our everyday lives is a daunting task, requiring us to break down the continuous world in meaningful events that can be understood, stored, and communicated. My recent projects have explored the ways in which our knowledge about the schematic structure of the world changes how we build these event representations. I will discuss the new experimental and analytic methods I have developed to study this question in naturalistic stimuli, and current work in my lab in which we have applied these approaches to study developmental changes in event perception.

Trainee Dissertation Award Presentation

Sponsored by Bezos Family Foundation

Chair: Bea Luna University of Pittsburgh, USA

Katie Insel Harvard University, USA

Brain and behavioral asymmetries for gain and loss learning emerge with age during adolescence

Adolescence is a period of the lifespan accompanied by normative shifts in motivated behavior, and the ability to learn from gain and loss incentives matures with age. However, it remains unclear whether adolescents exhibit value prioritization during gain and loss learning, a process that allows individuals to enhance learning for high-value outcomes in a goal-directed fashion. To test this guestion, N=84 participants age 13-20 completed a value-modulated probabilistic reinforcement learning task with low and high stakes gain and loss learning contexts during functional neuroimaging. Value prioritization was indexed by comparing learning performance, as measured by proportion optimal choice, between high and low stakes conditions when participants learned to approach gains or avoid losses. Older adolescents exhibited value prioritization in the gain domain, a behavioral profile that emerged with age during late adolescence. In contrast, younger adolescents exhibited value prioritization in the loss domain, and this effect attenuated with age. These age-related differences in learning could not be explained by differences in self-reported subjective value of the monetary incentives. Age-related asymmetries in value-prioritization were mirrored in functional recruitment of the ventral striatum during feedback. Younger adolescents exhibited value-based differentiation in the striatum during loss learning. However, with age, individuals were more likely to increase ventral striatal activity for high relative to low value gain outcomes. Moreover, gain value-tracking in the ventral striatum was associated with enhanced value prioritization during gain learning. Together, these findings reveal age-related asymmetries in brain and behavioral signatures of valueprioritization during gain and loss learning.

Huttenlocher Lecture

Chair: Deanna Barch Washington University, USA

BJ Casey Yale University, USA

Developmental cognitive neuroscience: We've come a long way, baby, or have we?

With advances in imaging technology, we have significantly improved our ability to examine the developing brain in vivo. The rise in large scale, longitudinal data collection now allows us to examine developmental trajectories in dynamic brain systems across and within individuals to make predictions about long term outcomes. But what impact has developmental science had on the quality of life for our youth or for our society to date? How can developmental science better inform the treatment of the developing brain in medicine, law and society? This lecture will discuss these issues from a historical perspective and consider future opportunities.

Local Session: Translational developmental neuroscience: From transcriptomes to connectomes

Chair: **Francis Lee** New York Presbyterian/Weill Cornell Medical Center

Jordan Marrocco The Rockefeller University, USA

Epigenetic signature in CA3 neurons associated with altered stress reactivity in mice subjected to early-life stress

Epigenetic control of gene expression by early-life adversities affects discrete brain regions involved in mood regulation and response to stress, such as the hippocampus. Using a protocol of chronic early-life stress (ELS) in mice followed by acute-swim stress in adulthood, we showed that ELS induced persistent changes in histone methylation in CA3 region that differed from those observed in control mice. RNA-sequencing of TRAP-isolated CA3 neurons revealed that ELS programs a restricted transcriptional response to stress in adulthood, inducing unique gene pathways. This sheds light on novel biomarkers for diagnostic prevention of psychiatric disorders in populations at risk.

Conor Liston Cornell Medical, USA

Early life stress effects on postsynaptic dendritic spine plasticity and prefrontal cortex function

Depression is a fundamentally episodic form of mental illness, yet the neurobiological mechanisms underlying the induction and remission of depressive episodes over time are not well understood. Early life stress is among the most established risk factors for depression, but it is unclear how early life stress influences depression susceptibility in adulthood, especially at the level of neural circuits. I will present new data from twophoton imaging and optogenetic experiments showing how early life stress modulates stress susceptibility, motivated escape behavior, and learning-related plasticity in adulthood through effects on dendritic spine remodeling.

David Pagliaccio Columbia University, USA

Subcortical brain structure and function in youth with depression or familial risk

Research probing subcortical structural and functional deficits in youth depression has often relied on small sample sizes, which limits generalizability. Toward addressing this gap, data from the Adolescent Brain Cognition Development Study (n=4,521 9-10-year-olds) showed that maternal depressive history related to smaller right nucleus accumbens volume. Building on this, data from the Human Connectomes Related to Anxiety and Depression in Adolescents Project (n=170 14-16-year-olds) indicated that reduced accumbens volume and reactivity to incentive cues in depressive-anxious adolescents relative to healthy adolescents. Collectively, smaller accumbens volume and altered accumbens functioning may play a key role in depression onset and maintenance.

Flash Talks

Chair: Kate Hartley New York University, USA

Suzanne van de Groep Leiden University, The Netherlands **The neural correlates of giving under different social contexts in adolescence**

Giving is essential for forming and maintaining social relationships, which is an important challenge for adolescents. This behavior is often characterized by the conflicting decision whether to forego self-interest to benefit others, and as such is highly context-dependent. There is currently little understanding of the mechanisms that drive context-dependent giving and how they develop in adolescence. Understanding the neural components of giving in different social contexts may shed light on these mechanisms. In this preregistered study, we studied giving and its neural correlates in different social contexts across adolescence. Specifically, we manipulated the extent to which self-interest outweighed benefits for others (i.e., donations were small instead of large), whether adolescents gave to a friend or unfamiliar other, and whether they were being observed by others or made anonymous choices. Participants (N = 140, ages 9 - 18) performed a novel giving fMRI paradigm, in which they divided coins between themselves and someone else in the aforementioned different social contexts. In line with our expectations, results showed that regardless of age, adolescents gave more i. when self-interest outweighed benefits for others, ii. when the beneficiary was a friend, and iii. when being observed. On a neural level, we found medial prefrontal cortex activity for small compared to large donations, and bilateral postcentral gyrus activation for the reverse contrast. Playing for a friend compared to an unfamiliar other elicited activity in the lateral and medial prefrontal cortex, as well as the right precentral gyrus, and the right inferior and left superior parietal lobules. These findings provide insights into the modulation of neural processes that underlie giving decisions as a function of the social context, highlighting the role of prefrontal areas and social brain regions.

Sarah Tashjian University of California, Los Angeles, USA **Perseverance in adolescents and young adults is related to neural response to performance feedback**

Although performance feedback itself has no extrinsic value, it can produce subjective feelings similar to rewards and punishments (Eisenberger, 2012). When perceived as motivational, performance feedback provides valuable information that can help quide learning (Tricomi et al., 2016). The present study examines whether neural response to feedback is related to intrinsic motivation to engage in an effortful cognitive task despite prior failure (i.e., perseverance). Adolescents and young adults were tested to examine age-related development in neural response and behavioral perseverance. During functional magnetic resonance imaging, 100 adolescents and young adults ages 13-30 (61 female; Mage=18.33) completed a novel perseverance task. Participants first completed a series of mental rotations during which they received quasi-manipulated feedback that their responses were either correct or incorrect (40% of trials received incorrect feedback regardless of performance, 60% received accurate feedback). Participants then made decisions to continue on a path requiring more mental rotations (persevere) or quit for an easier path. Perseverance decisions increased with age, t(98)=-2.27 p=.026.

Negative feedback (manipulated and accurate collapsed) elicited activation of anterior insula (Al) and dorsal anterior cingulate whereas positive feedback elicited activation in ventral striatum and medial prefrontal cortex, Z>3.1 p<.05 corrected. Individuals who persevered exhibited reduced Al activation to negative feedback and lower behavioral inhibition scores (BIS scale, Carver & White, 1994), measuring tendency to avoid aversive experiences, compared to individuals who quit. Results expand understanding of the neural systems associated with motivation and perseverance during adolescence and early adulthood. Additional results controlling for prediction error during manipulated feedback and examining how feedback relates to subsequent performance will be presented.

Hyesung Grace Hwang University of Chicago, USA Neighborhood racial demographics predict infants' motor system activation toward racial out-group individuals Objective: The human tendency to view the social world in terms of "us" and "them" emerges early in ontogeny yet the mechanism behind this tendency remains unclear. One candidate mechanism for this tendency is the action processing and mirroring mechanism. This study examined whether infants' perception of others' actions as reflected in neural motor activation is affected by the racial demographics of the neighborhood they live in. Methods: Forty-three 8- to 12-month-old White infants' EEG data across three studies were combined for secondary analyses. In all studies, infants observed either a White or Asian female actor grasp an object. Baseline-corrected mu power (6-9 Hz for infants) averaged across the C3 and C4 electrode clusters was extracted locked to the observed reach-to-grasp movement. This neural correlate of motor activity was examined in relation to neighborhood demographics based on zip code using a mixed model approach. Results: There was a significant interaction of mu power between the proportion of non-White population in the zip code and the racial group (White vs. Asian) of the presenter, = -7.965, SE = 2.348, t = -3.392, p = .002. Specifically, when White infants viewed an Asian presenter (n = 24), those from a neighborhood with greater proportion of non-White population showed greater mu desynchronization (i.e., greater motor activity), adjusting for variety of racial groups, proportion of Asian population, median income, and population density of the neighborhood, = -5.757, SE = 2.047, t = -2.812, p = .012. However, when White infants viewed a White presenter (n = 19), none of the neighborhood demographic variables predicted mu desynchronization. Conclusions: White infants showed greater motor activation toward a racial out-group individual if they have more exposure to racial out-group individuals in their neighborhood, suggesting motor system activation related to action understanding and mirroring is sensitive to neighborhood context.

Zaixu Cui University of Pennsylvania, USA

Individual variation in fronto-parietal control network topography supports executive function in youth

Recent evidence has established that the spatial topography of functional brain networks differs markedly among individuals, with the frontoparietal control network (FPN)

being the most variable. However, it remains unknown how this topography evolves during youth or relates to individual differences in executive function. Here, we capitalized upon a sample of 713 participants ages 8-22 who were imaged as part of the Philadelphia Neurodevelopmental Cohort and had over 27 minutes of high-quality fMRI data. We used a recently developed single-subject brain parcellation method based on non-negative matrix factorization to identify 17 individualized networks for each participant. Consistent with prior reports, we found that across-subject variability of network topography was highest in FPN and lower in visual and motor networks. Notably, the proportion of cortex devoted to the FPN increased with development (P(FDR) = 0.01) and was positively associated with executive functioning (P(FDR) < 0.001) while controlling for age. Using machine learning techniques, we found that this individualized functional topography could accurately predict both an individual's age (r = 0.72, p < 0.001) and executive performance (r = 0.45, p < 0.001)p < 0.001) in unseen data. Critically, elements of the FPN were the most important features for predicting both age and executive performance. Finally, the spatial distribution of these predictive features within the FPN aligned with fundamental properties of brain organization, including evolutionary expansion, areal scaling, myelin content, functional role, and cerebral blood flow. Together, these results delineate a process whereby specific functional network topography in the FPN matures during youth to support executive function.

Marjolein Barendse University of Melbourne / University of Oregon, USA

Neural correlates of self-evaluation during puberty

Forming a clear and multifaceted concept of the self is an important life challenge in adolescence. Previous studies have shown that self-concept changes during adolescence and that underlying neural correlates also change, for example in the medial prefrontal cortex (PFC). Very few studies have examined the change in self-evaluations/-concept and its neural correlates in relation to puberty, and whether pubertal processes relate to self-evaluative neural processes over and above age. The current study uses data from 174 girls aged 10.0 to 13.0 years to examine this. The girls completed a functional MRI paradigm in which they decided whether or not an adjective describes them, including positive and negative adjectives grouped into three factors: 'prosociality', 'antisociality/aggressiveness', 'surgency/detachment'. Participants also completed the Pubertal Development Scale and morning saliva samples to measure DHEA, testosterone and estradiol levels. We expect that (1) activation in the ventromedial PFC (vmPFC) and pregenual anterior cingulate (pqACC) during self-evaluation (relative to the control condition) increases with age; (2) pubertal development, both hormonal changes and self-reports of physical changes, will explain activation in areas subserving self-referential, affective and reward processes over and above age. This effect of pubertal development on neural activation will depend on adjective type/factor; (3) activation in vmPFC, pgACC and ventral striatum will be higher for positive adjectives compared to negative. In addition, on a trial-bytrial-level, negatively valenced adjectives that are endorsed as

self-descriptive will engage the vmPFC and pgACC more than those that are rejected. This project is preregistered here: https://osf.io/g94h8/.

Tzipi Horowitz-Kraus Technion and Cincinnati Children's Hospital, USA

Executive functions in reading: impairment and plasticity in children with and without dyslexia

Approximately 15% of children in the western world have reading disabilities, a neurodevelopmental disorder known to impact academic achievements as well as social and emotional wellbeing. Identification of the underlying factors contributing to RD is crucial for proper classification and planning of remedial interventions. Current strategies rely exclusively on behavioral measures and are of limited precision. Here, we aimed to study the role of cognitive control in reading among children from birth to age 12 years using a multimodal approach utilizing several MRI methodologies as well as EEG data. Results provided potential biomarkers for reading difficulties in children: EEG data suggested decreased event related potentials evoked from the anterior cingulate cortex (ACC) and functional MRI data showed decreased functional connectivity of cognitive control networks. Using MRI, we then demonstrated the effect of an executive-function based intervention on these functional connections during both reading and resting-state conditions. Greater attention- and inhibition-related ERPs were observed following training. The advantages of using neuroimaging methods in evaluation of neurodevelopmental disorders in children and the challenges the field of developmental neuroimaging is facing will be discussed.

Ashley Nielsen Washington University in St. Louis, USA

Two patterns of atypical development involving distinct functional networks in Tourette syndrome

Tourette syndrome (TS) is a complex disorder with symptoms that involve sensorimotor and top-down control processes that fluctuate over the course of development. Understanding the neural substrates supporting the range and time course of symptoms in TS may require a whole-brain description of large-scale circuitry and examination of these substrates across development. Here, we used functional connectivity MRI to examine, in TS, the diverse functional networks across the brain that support cognitive functions. We considered the connections within each functional network and between each pair of functional networks separately. We then compared the development (here, cross-sectional differences between children and adults) of these connections in TS to that in healthy controls. We found evidence for two patterns of atypical development in TS that involved different within-network and cross-network connections. Developmental differences that were greater in TS than in controls were among control and processing networks. These connections did not differ between control children and adults, but were stronger in adulthood TS. By contrast, developmental differences that were smaller in TS than in controls involved functional connections between subcortical structures and control and processing networks. The strength of these connections increased/decreased between control children and adults, but to a smaller extent in TS and were indicative of immaturity in adulthood TS. These two distinct patterns of atypical development may be supported by different mechanisms.

Divergently stronger functional connectivity in adulthood TS may be associated with frequent, coordinated engagement of attention, top-down control, and sensorimotor processes that accompanies a history of tics. The incomplete maturation of the integration and segregation of the subcortex and cortical sensory and attention networks may be a factor in persistent tics in adulthood.

Benjamin Conrad Vanderbilt University, USA

Neural mechanisms of digit processing in kindergartners: An fMRI study

Number symbol processing is a critical foundation for math achievement. Evidence in adults suggests preferential engagement of a "Number Form Area" (NFA) in the ventral occipito-temporal cortex (vOTC), during the processing of Arabic numerals compared to other symbols, and that the function of this region relates to individual differences in calculation ability. It is currently unknown, however, 1) when preferential processing of the NFA develops, 2) what mechanisms drive category specificity in the NFA, and 3) how NFA function relates to behavior in children. We address these questions using fMRI in typically-developing kindergartners who performed a symbol classification task. Participants (n=46, Mean age 6.1*0.4yo) saw digits, letters, or scrambled symbols, deciding whether they "knew the name" of the stimulus. We found no evidence for preferential processing of digits in the NFA in relative activation level, nor in representational distinction via MVPA. Similarly, we found no evidence of differences across symbol categories in NFA-to-parietal connectivity, as would be predicted from a biased-connectivity account of vOTC functional development. In a brain-behavior correlation, a significant negative association was observed between digit-related activity in the NFA and digit naming speed (r = -0.52, p < 0.001), with higher performance related to lower activation to digits relative to other symbols. The relationship remained significant (p < 0.02) after controlling for letter naming speed. This finding suggests NFA function is relevant for digit recognition in kindergarten, albeit in the opposite direction than expected. Overall, our results are not easily reconcilable with prior findings in adults, suggesting a complexity to NFA development which requires further investigation, including longitudinal assessment of NFA functional maturation.

Ana Cubillo University of Zurich, Switzerland

Response time variability is associated with more current and future negative life outcomes in children

Aims: Intra-individual variability in response times (RT-variability) has been associated with symptom severity in ADHD, ASD, schizophrenia, and dementia. This study investigates its potential as a marker of risk for negative outcomes in terms of both psychopathology and more general well-being. Methods: We recruited 28 typically developing 7-8 year-old children from an on-going longitudinal study on working memory training. They performed an fMRI-adapted N-Back as well as several other cognitive tasks. We used a step-wise regression analysis including accuracy and RT-variability measures from the N-Back task as independent variables and scores from Strength and Difficulties Questionnaire (total and externalising scores) and Math performance at 6 or 12 months after training as outcome measures. We also tested for similar relationships in a sample of 3,223 children from the ABCD study. For the ABCD sample, we used the total and externalising T-scores from the Child

Behaviour Check List (CBCL) and body-mass-index (BMI) as outcome measures. Results: In the longitudinal sub-sample. RT-variability during the N-Back was significantly associated with future SDQ total scores (Standardized Beta=0.44, p=0.013), externalizing scores (Standardized Beta=0.44, p=0.01), and Math performance (Standardized Beta= -0.612, p=0.002). We found a similar association in the ABCD study. There, RT-variability in the N-Back was significantly related to CBCL total (Standardized Beta=0.023, p=0.014) and externalizing (Standardized Beta=0.029, p =0.003) measures, as well as BMI (Standardized Beta=0.027, p=0.003). Conclusions: RT-variability during the N-Back task is correlated with adverse outcomes on measures of academic performance, general behavior, and health. This increased RT-variability might be thus an early signal reflecting inefficient processes underlying the dynamic control of sustained or selective attention, or interference inhibition processes, response selection and/or execution.

Day 2 Saturday, August 31

Oral Session 2 - Prenatal influences on brain development and subsquent behaviour

Chair: Alice Graham Oregon Health & Science University, USA

Claudia Buss Charité Universitätsmedizin Berlin, Germany

Fetal programming of brain development - Role of maternal-placental-fetal stress biology

The origins of alterations in brain anatomy and connectivity, that may underlie cognitive impairment and mental illness, can often be traced back to the fetal period of life when the developing embryo/fetus responds to suboptimal conditions during critical periods of brain development ("Fetal Programming"). Maternal stress during pregnancy may affect fetal developmental trajectories by altering stress-sensitive endocrine and immune biological mediators, such as cortisol and interleukin-6 (IL-6). Evidence in humans will be presented in support of elevated maternal cortisol and IL-6 concentrations during pregnancy being associated with offspring brain anatomy and connectivity with implications for cognitive function and mental health.

Elinor Sullivan Oregon Health and Science University, USA

Maternal metabolic and dietary environmental influences on offspring behavior

Perinatal environmental factors such as poor maternal diet influence the risk of pediatric neurodevelopmental disorders. In a nonhuman primate model, exposure to maternal obesity and a Western-style diet (high in saturated fat and sugar) altered s brain development resulting in long-lasting changes in behavior including increased anxiety and impaired social behavior. These findings indicate that poor maternal nutrition initiates a fetal environment that may result in neural reprogramming and predisposes offspring to pediatric neurodevelopmental and metabolic disorders. **Cynthia Rogers** Washington University, USA **Chris Smyser** Washington University, USA

Aberrant structural and functional connectivity underlies neurodevelopmental impairment and psychopathology in preterm children

Despite advances in neonatal care, preterm birth remains a leading risk factor for neurodevelopmental disabilities and is linked with high rates of co-occurring attention deficit hyperactivity, anxiety and autism spectrum disorders. Affected children also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes across MRI modalities evident as early as the neonatal period. This talk highlights alterations in connectivity within key functional networks and white matter tracts underlying the neurodevelopmental impairments and psychiatric diagnoses common in this population, including detailing the effects of early life adversity and related clinical and psychosocial risk factors modifying these relationships.

Oral Session 3: Big data and open science: Relevance for developmental cognitive neuroscience

Chair: Damien Fair Oregon Health & Science University, USA

Mike Milham Child Mind Institute, USA

Large-scale, open neuroimaging datasets are increasing more than just sample size

An increasing number of multimodal imaging datasets are becoming available, each creating novel opportunities for discovery – both individually and collectively. Using selected examples, this presentation will provide a survey of opportunities that exist for generating and addressing novel questions capable of advancing developmental neuroscience. Additionally, the impact of the open datasets on how we are conducting research, not just what is being asked, will be discussed. Relevant examples from the existing literature will be highlighted. Potential pitfalls to avoid will be discussed as well.

Jenn Pfeiffer University of Oregon, USA

Improving practices and inferences in developmental cognitive neuroscience: Open science tools for research design, analysis, and publication

The open science movement has produced introspection and concern regarding research practices and publication biases. To move forward, we must make changes to our analytical strategies and publication standards that are simultaneously transformative and accessible. This talk focuses specifically on implementing such changes in developmental cognitive neuroscience (DCN), from my dual perspective as a lab director and journal editor. I describe some common and useful open science tools for DCN, as well as distinguish between confirmatory and exploratory approaches. Doing so reveals tools particularly suited to each approach, such as pre-registration, registered reports, and specification curve analysis.

Kathrine Skak Madsen Danish Research Centre for Magnetic Resonance, Denmark

Opportunities and challenges of sharing and pooling data from existing longitudinal neuroimaging cohorts

Longitudinal (developmental) neuroimaging studies have acquired rich data on e.g. cognition, mental health, lifestyle, genetics and biological measures. Given their expensive and

time-consuming nature, the number of assessed participants, however, is often limited. Pooling data from different developmental cohorts may improve statistical power and representativeness, both critical for elucidating more complex relationships between e.g. brain and behavioral development and the impact of intrinsic and extrinsic factors. However, as data sharing and pooling rarely have been thought into existing studies by design, researchers need to overcome several challenges before effective and productive data sharing and pooling can be realized.

Young Investigator Award Talk

Supported by the Kennedy Krieger Institute Chair: **Brad Schlaggar** Kennedy Krieger Institute, USA **Eva Telzer** University of North Carolina at Chapel Hill, USA **For better or for worse?: Neurobiological sensitivity to social context**

Flash Talks

Chair: Jess Church University of Texas at Austin, USA

Kathy Do University of North Carolina, Chapel Hill, USA

Peers exert a stronger prosocial than antisocial influence on adolescent attitudes: Evidence from brain and behavior Parents and peers differentially influence decision making during adolescence, yet little is known about social conformity in contexts where parents and peers exert competing influences. The present fMRI study examined adolescent conformity to different types of behaviors in the face of conflicting influences from parents versus peers. Adolescents (n=39; 12-14 years) and their parents rated their attitudes toward everyday positively and negatively valenced behaviors that adolescents might engage. During a brain scan one week later, adolescents were shown their parent's and an unknown peer's ratings of these same behaviors, which were manipulated to conflict with adolescents' initial ratings, and indicated who they agreed with. Generalized linear mixed effects models indicated adolescents were equally likely to conform to their parent and peer when their parent's ratings conflicted with their peer's ratings, with no differences in the brain. When their parent's or peer's ratings conflicted with their initial ratings, adolescents tended to stick with their initial ratings 70% of the time. When they did conform, adolescents were more likely to conform to their peer on positive than negative behaviors, which was paralleled by decreased vmPFC activation to positive behaviors but increased vmPFC activation to negative behaviors. Furthermore, an interaction between the valence of the behavior and magnitude of peer influence suggests that adolescents were more likely to conform on negative behaviors when their peer endorsed prosocial ratings (i.e., peer rated negative behavior as "less good") than antisocial ratings (i.e., peer rated negative behavior as "more good"). These results suggest that adolescents are relatively autonomous in the face of conflicting social influence but selectively conform to positive peer influences, thereby challenging prevailing conceptions of adolescence as a period of increased and unmitigated susceptibility to negative social influences.

Bridget Callaghan Columbia University, USA

Hippocampal multivoxel encoding signatures predict long-term memory across middle childhood and adolescence in humans.

The episodic memory system changes dramatically across the first few years of life. However, subtle alterations in episodic memory continue throughout middle childhood/adolescence. The neural mechanisms underlying such nuanced memory development are elusive, and studies using traditional Region of Interest (ROI) based approaches provide conflicting evidence for the role of hippocampal functional maturation during those ages. In this study we employ an advanced statistical technique, multivoxel correlation structure (MVCS), to functional magnetic resonance imaging (fMRI) data, while children and adolescents were engaged in an item-context associative learning task, which was sandwiched between two resting state scans. This statistical approach enables us to examine coordinated activity within the hippocampus at rest, during learning, and immediately after learning in a purported consolidation period. We report that such multivoxel activity changes across middle childhoodadolescence, with representations at learning and rest becoming more granular (i.e., less coordinated) with age. We also report that age changes in hippocampal multivoxel activity are regionally specific, with the posterior areas of the hippocampus changing the most across development. Importantly, we find that the level of representational granularity in the hippocampus during learning, and in the post-learning consolidation period, is associated with better immediate recognition memory, and delay associative memory (1 week after the scan), respectively. These data support the use of multivariate analysis approaches for uncovering subtle changes in hippocampal maturation across middle childhood and adolescence.

Lourdes Delgado Reyes University of East Anglia, UK The role of toddler myelination in preschool executive function development

Infancy and early childhood are times of rapid change in the organization of cognition and behaviour, as well as brain development. An important process during this period is the maturation of myelinated white matter (WM), which facilitates rapid communication across the neural systems thought to underlie the emergence of complex cognitive abilities. Previous studies have linked WM development with cognitive development, but few studies have examined these relationships in early development. Here, we aim to explore the relationship between myelination and executive function (EF) in early development. Executive function refers to an interrelated set of neurocognitive systems that underlie behavioral control and cognitive flexibility. EF has pervasive influences on cognition and later development. A key challenge is to understand how EF develops early in development where early interventions might have the most impact. Diffusion tensor imaging studies have identified several WM tracts that are important for performance on EF tasks: cingulum bundle (CB), the superior longitudinal fasciculus (SLF), the anterior thalamic radiations (ATR), and inferior longitudinal fasciculus (ILF). We measured WM myelination using a multicomponent relaxation approach (mcDESPOT) to calculate the myelin water fraction in 30-mo toddlers. Participants also completed the Minnesota Executive Function Scale (MEFS) at 30- and 42-mo. We will examine the relationship between myelination in the previously identified WM structures, as well as, whole brain WM when participants are 30mo and executive

function performance at 42-mo. We hypothesize that EF at 42-mo will be related to myelination in these WM structures, in particular in the ATR and SLF such that participants with more myelin will have better EF scores, even after controlling for age, SES and EF at 30-mo. These results will provide new insights into the neuro-anatomical correlates of executive function in early development.

Giorgia Picci The Pennsylvania State University, USA

The moderating role of socioeconomic status on relations between level of responsibility and cortical thinning during adolescence

The development of autonomy and goal-directed behaviors are key milestones of adolescence. Expectations from parents to engage in responsible behaviors (e.g., household chores, outside work) may support this emergent process by recruiting brain regions that subserve executive functions (EFs) which, when in deficit, underlie poor outcomes such as substance use (SU). Adolescent responsibility, however, may exert either beneficial or detrimental effects, depending upon the context; e.g., parental pressure to be responsible may induce stress. Outcomes related to responsibility may be moderated by family resources (SES), indicative of whether parental demands for responsibility are due either to need or personal choice. The relationship between level of responsibility and neurocognitive development has yet to be examined. Further, such a study requires delineation of contexts likely to play a role in helpful vs. harmful effects of responsibility. We explored relationships between responsibility, SES (low vs. high), SU, and brain structure in drug-naïve adolescents (N=114; 11-14 years;60 females), some of whom initiated SU at 18-or 36-month follow-up (N=37). Contrary to expectation, greater levels of responsibility predicted earlier SU onset (Cohen's d=0.7). The low SES group reported higher levels of responsibility than the high group (d=.5). In low SES (and not high SES), higher levels of responsibility corresponded with cortical thinning in regions implicated in EF (i.e. left precuneus and right middle frontal) (d=.8), which may indicate a developmental deficit. In high SES, responsibility positively correlated with performance in a problem-solving task (Stockings of Cambridge) (d=.7). These results suggest a moderating role of SES in the positive vs. negative effects of responsibility on adolescent neurobiology and behavior, with greater responsibility predicting impaired development of regions subserving EF in low SES and improved EF behavior for those in higher SES.

Adam Grabell University of Massachusetts, USA

Using fNIRS and Galvanic Skin Response as a novel approach to infer Limbic-Prefrontal processes in early childhood

Objective. Functional Near-Infrared Spectroscopy (fNIRS) is a popular approach to measure neural activation in early childhood populations that cannot tolerate fMRI, and provides good spatial resolution of prefrontal cortex (PFC) areas important for emotion regulation. However, fNIRS cannot reach sub-cortical limbic structures or measure limbic-prefrontal connectivity crucial to emotion regulation. Galvanic skin response (GSR) is a sensitive index of autonomic arousal heavily influenced by myriad limbic structures, suggesting GSR could be combined with fNIRS to infer limbic-prefrontal processes. We recorded simultaneous PFC activation via fNIRS and GSR in 3 to 5 year old children during a rewarding and frustrating task. We tested associations between PFC activation and GSR reactivity and recovery and whether associations were moderated by children's level of irritability. Methods. Thus far 40 3-5 year old children (M = 54 months; SD = 7.6; 55% male) completed a developmentally sensitive task (Incredible Cake Kids) comprising win and frustration blocks while fNIRS and GSR were recorded. Results. Regression models showed children with greater LPFC activation during reward had greater GSR reactivity (b= 11.5, p < .05) and weaker GSR recovery post-reward (b= 9.1, p < .05) than peers. Children with greater LPFC activation during frustration had lower GSR reactivity (b= -160.7, p < .05) and greater GSR recovery post-frustration (b= -108.3, p < .05). There was a significant irritability*GSR reactivity interaction (b = 17.3, p < .05) such that the inverse association was strongest for children with moderate irritability and absent those with high irritability. Conclusions, Combining fNIRS and GSR may be a promising novel approach for inferring limbic-PFC processes underpinning early emotion regulation and psychopathology. Results suggest an inverse association between PFC activation and GSR reactivity that is disrupted in children with high irritability.

Jin Wang Vanderbilt University, USA

Higher quality neural representations of phonemes scaffold longitudinal reading gains in 5- to 7-year-old children

The objective of this study was to investigate, using a brain measure of phonological awareness, whether phonological awareness is crucial for the development of reading skill (i.e. scaffolding hypothesis) and/or whether learning to read words refines phonological awareness (i.e. refinement hypothesis). We specifically looked at how different grain sizes of phonology and how two different phonological processes (i.e. phonological representation in the posterior superior temporal gyrus, STG, and phonological access in the dorsal inferior frontal gyrus, IFG) played a role in this bidirectional relation. 36 children completed a reading test outside the scanner and an auditory phonological awareness task inside the scanner which included both small (i.e. onset) and large (i.e. rhyme) grain size conditions. Children were tested when they were 5.5-6.5 years old (Time 1) and once again approximately 1.5 years later (Time 2). To study the scaffolding hypothesis, a regression analysis was carried out by entering brain activation for either small (onset>rhyme) or large (rhyme>onset) grain size in either STG or IFG at T1 as the predictor and reading skill at T2 as the dependent measure. Non-verbal IQ, phonological working memory and reading skill (all at T1) were entered as covariates of no interest. In order to study the refinement hypothesis, the regression analysis included reading skill at T1 as the predictor and brain activation for either small or large grain size in either STG or IFG at T2 as the dependent measure. Non-verbal IQ, phonological working memory and brain activation (all at T1) were entered as covariates of no interest. Our results provided the first neural evidence supporting the scaffolding hypothesis, by showing that the better the representational quality for small grain size phonology in the brain at T1, the larger growth of reading skill over time. This has important implications for early reading identification and interventions.

Arianna Gard University of Michigan, USA

Unique effects of age and pubertal development on amygdala-PFC connectivity during face processing

Processing facial expressions of threat (anger) and distress (fear) is linked to psychopathology and is thought to be mediated, in part, by connectivity between the amygdala and regions of the prefrontal cortex (PFC). Though resting-state approaches have

found that amygdala-mPFC connectivity strengthens with age (Gabard-Durnam et al., 2014), and several task-based studies suggest that amygdala-mPFC connectivity shifts from positive to negative connectivity with increasing age (Gee et al., 2013), there have been no studies to parse the effects of age from correlated pubertal development. The current study examined the overlapping and distinct effects of age and puberty on amygdala-PFC connectivity during emotion processing. Participants were from the Michigan Twin and Neurogenetics Study (N=265; Age=8-18 years), a population-based sample of twins (Burt & Klump, 2013). We used a large prefrontal mask of Brodmann's Areas 9,10,11,24,25,32, and 47 to characterized amygdala connectivity patterns with multiple prefrontal regions during an implicit emotional faces matching task. We examined changes in connectivity during angry and fearful face versus shapes conditions using Generalized Psycho-Physiological Interactions (McLaren et al., 2012).

Perceived pubertal development was measured with the Pubertal Development Scale (Peterson et al., 1998). Covariates included gender and child race. Although both advancing pubertal development and chronological age were associated with greater right amygdala - right orbitofrontal (BA 11) and right amygdala - right medial prefrontal (BA 9) connectivity during fearful face processing, only pubertal development exerted unique effects (i.e., after accounting for age). Pubertal development was also associated with condition-specific changes in amygdala connectivity during angry face processing, where chronological age was not. Measures of pubertal development should be integrated into developmental studies of corticolimbic maturation.

Ashley Parr University of Pittsburgh, USA

Striatal dopamine contributions to the development of frontostriatal connectivity in a reward learning context

Developmental changes within the mesolimbic dopamine system are thought to contribute to heightened motivation and risk taking in adolescents. Initial studies indicate developmental decreases through adolescence in connectivity between reward striatal and executive prefrontal systems, possibly reflecting animal models of pubertal changes in dopamine (DA). However, the role of DA in developmental changes in frontostriatal reward processing is not understood in vivo in humans. Using direct and indirect measures of DA processing within the context of reward learning, we tested the hypothesis that there is heightened nucleus accumbens (NAcc)/ventromedial prefrontal cortex (vmPFC) connectivity associated with increased DA in the adolescent period versus adults. A Siemens 3T mMR was used to obtain MR (12-30 yo) and PET (18-30 yo) measures in 115 participants. Background connectivity, a measure of contextdependent changes in functional connectivity, was assessed by regressing out task-related components during a reward learning task. R2' was used to measure tissue iron changes as a noninvasive indirect measure of striatal DA processing. PET [11C] dihydrotetrabenazine (DTBZ) in adults provided a measure of presynaptic vesicular DA storage. Linear mixed-effects models revealed that during a state of reward-guided decision-making, functional coupling between the NAcc-and ventral anterior cingulate (t=2.79, p=0.006), subgenual cingulate (t=2.29, p=0.02), and posterior medial orbitofrontal (t=2.24, p=0.03) cortices decreased from adolescence to adulthood. These age-related decreases in NAcc-vmPFC connectivity were mediated by R2' indices of NAcc dopamine levels that were confirmed to be

associated with PET DTBZ. These results provide new in vivo evidence of DAergic changes in adolescence underlying reward processing frontostriatal connectivity.

Kristina Rapuano Yale University,

Predicting vulnerability to risk behaviors in a large cohort of children

The prevalence of risky behaviors and substance abuse increases during adolescence. Using a data-driven approach, we sought to develop behavioral and neural models of vulnerability to risky behaviors in childhood. To identify a behavioral indicator of risk for use, responses to substance use-related questions were assessed in 11,875 nine- and ten-year-olds participating in the Adolescent Brain and Cognitive Development (ABCD) study (Casey et al., 2018; Lisdahl et al., 2018). A principal components analysis of responses revealed two orthogonal components that loaded highly on child knowledge of and intention to use substances (i.e., PC1) and familial factors related to substance use (i.e., PC2). Component loadings were validated across twenty-one sites to determine the reliability of dimensions associated with risk. Behavioral components were used to generate connectome-based predictive models (CPM; Shen et al., 2017) of risk based on resting-state neural connectivity. Individual differences in PC1 scores were significantly predicted in left-out subjects using CPM: however, neural models were not predictive of PC2 scores. These findings suggest that substance use-related risk factors can be guantified and predicted prior to initiation. Moreover, they may distinguish risk associated with child intent from familial risk that may emerge later in development. These findings set the groundwork for future prediction of early substance use initiation and chronicity.

Oral Session 4: Individual differences in brain development: Moving beyond the average developmental trajectory

Chair: Angie Laird Florida International University, USA

Andrik Becht Leiden University, The Netherlands

Moving beyond the mean level: A longitudinal study examining individual differences in social brain developmental trajectories

Aim: Adolescence is considered a key period for the development of advanced social cognitive and high quality social relationships. Parallel to these psychosocial changes, massive structural brain changes occur in a network of brain regions that are considered crucially involved in social cognition and social relationships. These brain regions consist of the medial prefrontal cortex (Brodmann area 10, mBA10), temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS), and precuneus (Mills et al, 2014). To date, existing research has largely focussed on average development across ages, which may have obscured meaningful individual differences in the speed of development in social brain regions (Foulkes & Blakemore, 2018). Therefore, the aim of this study was to empirically examine individual differences in social brain development. Moreover, we examined whether and how individual differences in social brain development predicted individual differences in the quality of peer relationships. Method: To this end, 270 adolescents (Mage 14.14 years at T1) were followed across three biannual waves (T1-T3). Peer relationship quality was assessed at T3. Results: Consistent with previous studies, latent growth curve models revealed

decreases in grey matter area and thickness in social brain regions across adolescence. However, our findings revealed significant individual differences in both the level (i.e., intercepts) and change (slopes) in social brain regions across adolescence. These individual differences in the speed of development were meaningfully related to individual differences in peer relationship quality; Those adolescents who showed a slower decrease in thickness in precuneus, TPJ, and pSTS, relative to other adolescents, reported less positive peer relationships over time. Conclusion: Our findings emphasize the importance to move beyond the study of average trajectories for structural social brain regions in adolescence. In doing so, our findings highlight possible developmental neurobiological markers of adolescents' social functioning in the peer context.

Rogier Kievit University of Cambridge, UK

Modelling the dynamics of brain structure and cognitive development

In this talk, I will discuss findings from the Danish HUBU cohort, which scanned N=93 typically developing children (age 7.5-19) up to 11 times with Diffusion weighted imaging alongside a broad battery of cognitive tests. In this talk, I will focus on the interplay of white matter microstructure (5 waves) and processing speed (3 waves). I will illustrate how cognitive ability and white matter microstructure develop in concert across developmental time, and how to use tailored SEM's to better understand lead-lag relationships between brain and behaviour.

Kate Mills University of Oregon, USA

The strategic adolescent brain: functional brain organization during adolescence relates to behavioral strategies

The malleability of the developing brain helps us learn to navigate our social environment. This presentation will examine how brain networks involved in mentalizing, cognitive control, and reward valuation develop in adolescence and how interactions between these networks relate to behavioral strategies. The first study investigates how the preference for delayed rewards, which is typically considered a marker of developmental maturity, can be better understood when considering an individual's functional brain organization in relation to chronological age. The second study examines how individual differences in functional connectivity between mentalizing and reward valuation networks facilitates the development of intimacy between friends.

Day 3 Saturday, August 31

Oral Session 5: New progress in understanding memory development from infancy to childhood

Chair: **Sarah Durston** University Medical Centre Utrecht, The Netherlands

Nicholas Turk-Browne Yale University, USA

Functional brain imaging of learning and memory in human infants

Tremendous progress has been made in understanding the brain systems that support human learning and memory. However, this progress is based predominantly on adult data and mostly neglects the astonishing learning that occurs early in life. A major stumbling block is that key brain systems like the hippocampus are accessible only with fMRI, a difficult technique in infants, especially when they need to be awake during tasks. We have devised approaches that make it possible to obtain considerable high-quality data of this type. This is allowing us to characterize the nature and early development of statistical learning and episodic memory.

Simona Ghetti University of California, Davis, USA

The what, where, and when of memory in toddlers: Behavioral and neural evidence

Relational processes are responsible for forming memory representations that include various elements of an experience such as spatial and temporal details. These processes provide the foundation for episodic memory. Episodic memory emerges during late infancy and improves during early childhood. However, many open questions remain including whether different features of young children's memories (e.g., spatial versus temporal details) improve at similar rates, and whether memory performance in toddlers is related to hippocampal structure and function. In my presentation, I will discuss the results of recent studies that have attempted to address these questions.

Sang Ah Lee Korea Advanced Institute of Science and Technology, Korea

The binding of space and time in episodic memory

In the present study, we explored whether the ability to bind spatiotemporal information plays an important role in the development of episodic memory. We tested children's binding of what and whereand when components of memory in an active object-placement task. Results suggest that children first develop the ability to reliably bind together space and time around 4 years and then bind objects onto this representation at ~6 years. These results are not due to improvements in object or spatial processing alone and suggest that spatiotemporal binding occurs early in development and provides a scaffold for episodic memories.

Zoë Ngo Temple University, USA

Development of holistic episodic recollection

Episodic memory binds together the diverse elements of an event into a coherent representation, allowing for the reconstruction of multidimensional experiences when triggered by a cue related to a past event—a process of pattern completion. Such holistic

recollection is evident in young adults, as shown by contingency the retrieval success different within-event associations. However, the ontogeny of pattern completion is uncharted. Here, we found that, akin to adults, 4 and 6-year-olds retrieve complex events in a holistic manner. Nevertheless, the degree of holistic retrieval increased from age 4 to adulthood, suggesting a protracted refinement in pattern completion in development.

Oral Session 6: Early social markers of social competnecy: Translational studies in primates

Chair: Jocelyne Bachevalier Emory University, USA

Amanda Dettmer Yale University, USA

Early mother-infant interactions and social development in rhesus monkeys

Owing to their social, behavioral, anatomical, physiological, and genetic similarities to humans, nonhuman primates are especially strong translational models to determine how early life experiences shape later social development. This presentation will focus on individual variability in mother-infant interactions in the neonatal period in rhesus monkeys. I will describe some of the factors that contribute to this variability, as well as the developmental sequelae of infant monkeys experiencing different levels of early caregiver interactions. A particular focus will be an early face-to-face intervention tested in nursery-reared infant monkeys, and the social development of these infants compared to typically nursery rearing.

Pier Francesco Ferrari Univeristà di Parma, Italy

Early social experience, genetic influences and epigenetic regulation in the developing social brain

Infants' capacity to engage in social interactions is fundamental to their psychological development, and in primates it includes the spontaneous tendency to attend to a limited set of sociallysalient stimuli and to respond selectively to them. During mother-infant face-to-face interactions infants are also capable to modulate both intensity and timing of facial expressions in response to mother's facial gesture. These early forms of matching/synchronous behaviors are important in tuning mother-infant emotional exchanges and in predicting later infant social development and brain maturation. Perturbations or absence of such early social exchanges have important short and long term consequences on social development and emotional regulation with significant implications on the emergence of psychological disturbances. Neurochemical regulation of these infants' behaviors through oxytonergic administration suggest that oxytocin have a major role in modulating early social interactions. Moreover, the differential expression of its receptor at the brain level, due to early social adversities, is responsible for diminished social responses and increased stress reactivity. From a neurophysiological standpoint, there is evidence that specific brain networks specifically process social information related to others' emotions and behaviors, and are therefore potential markers of brain development under normal and perturbed social conditions. One of these brain networks, the mirror neuron network comprises the parietal-premotor circuit and the connected regions involved in affective/emotional regulation, such as the amygdala-prefrontal circuit, the anterior cingular cortex, the hippopcampus and the anterior insula. We are collecting evidence that these areas are sensitive to the effects of early social adversity. Preliminary data, in fact, suggest that the effects of

early social deprivation has not only an impact on such functional brain networks in the early postnatal period but also at a later stage of development, in the pre-pubertal/peri-adolescence period, when the main psychiatric disturbances emerge.

Mar Sanchez Emory University, USA

Development of macaque face visual processing using combined eye-tracking and MRI: in search of nonhuman primate models of social deficits of relevance to Autism

Reading faces in social interactions is crucial to understanding intentions and emotions in others, and is impaired in individuals with neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Characterizing the emergence and development of these skills and underlying brain circuits may help understand impaired socioemotional development in children with ASD. A theory in the etiology of ASD is that early neonatal visual attention is "reflex-like", becoming voluntary -reward-basedat later ages, so that disruptions in this transition result in ASD pathology. Using longitudinal eye-tracking and structural and MRI methods, our group has shown that infant rhesus monkeys also exhibit inflections in developmental trajectories of fixation in the eye region of faces that parallel those reported in humans. This critical period for social skills refinement takes place around 4-8 weeks of age, in parallel to switches in brain networks that seem to underlie the inflections in developing social skills. Our results show similarities to developmental trajectories of social visual engagement in human infants (Jones & Klin, 2013), and further validate rhesus monkeys as a translational model of early socioemotional development to examine the underlying neurodevelopmental mechanisms.

Oral Session 7: Computational/predictive coding and development

Chair: Gregoire Borst Université Paris-Sorbonne, France

Richard Aslin Yale University, USA

The promise and challenges of using fNIRS to study predictive mechanisms in human infants

Predictive Coding entails a comparison of bottom-up data-driven signals with top-down hypothesis-driven signals. Despite the sluggish time-course of hemodynamic measures, there is substantial evidence of top-down signals in adults using fMRI and in infants using fNIRS. While this neural architecture is efficient, it is not necessary as a mechanism for making predictions, which can be accomplished based solely on sophisticated (i.e., contextually based) bottom-up signals. Indeed, infants at risk of cognitive delay/deficit due to extreme prematurity exhibit little evidence of top-down signals, yet display normative behavioral evidence of prediction. The promise of using MVPA techniques to separate bottom-up from top-down signals as an estimate of prediction error will be reviewed, along with the challenges of obtaining such data from human infants using fNIRS.

Elizabeth Bonawitz Rutgers University - Newark, USA **Predictive "EN"-coding: How prior beliefs influence preschooler's memory**

Models of children's inductive inference provide a framework for how children's prior beliefs and new evidence are integrated to support learning. In this talk, we follow on previous research demonstrating cases when prior beliefs help and hinder recall. In one set of studies, we show that children, like adults, rely on category information in their recall of color. In another set of

studies, we find that given strong model expectations, event violations have both benefits and costs to future event encoding. Taken together, this studies present a glimpse of how prior beliefs can influence children's encoding of information.

Randy O'Reilly Colorado University, USA

Deep predictive learning in the neocortex and pulvinar

Early developmental learning in babies appears largely passive, and yet forms the deep foundation of all that follows. We propose that, hidden under that passive exterior, a very active form error-driven predictive learning is taking place, based on the temporal difference over the Pulvinar between predictions generated by deep neocortical layers and a ground truth signal from strong, one-to-one projections via layer 5IB bursting cells, at the alpha frequency (every 100 msec). This model is consistent with a wide range of biological data, and it can self-organize invariant, categorial object representations in its simulated inferotemporal cortex.

Oral Session 8: The effects of pubertal and sex hormones on brain maturation: Current research across different phases of development, and across species

Chair: Deanna Barch Washington University, USA

Megan Herting University of Southern California, USA

Androgens and structurally distinct amygdala subregion development in children and adolescents

The amygdala is comprised of a heterogeneous set of nuclei that are vital to emotional processing, motivation, and social behaviors that continue to develop across childhood and adolescence. This talk will discuss a novel method to segment and measure the developmental patterns seen in amygdala subregions across adolescence. Specifically, findings will be presented as to how amygdala subregion development varies by sex, physical and hormonal characteristics of sexual maturation, and androgen receptor genotype in typical developing adolescents. Lastly, we also discuss how disruptions to early life androgens may impact amygdala development as seen in children with Congenital Adrenal Hyperplasia.

Sarah Whittle University of Melbourne, Australia

Pubertal hormones predict sex-specific trajectories of pituitary gland volume during the transition from childhood to adolescence

Pituitary gland volume (PGV) increases during childhood and adolescence, yet no work has investigated the contribution of hypothalamic-pituitary-adrenal axis hormones that play a role in the earliest pubertal phase of adrenarche. To address this question, longitudinal data from 249 children (409 datasets, age range 8 to 13 years) were used to explore associations between PGV and dehydroepiandrosterone (DHEA), its sulfate (DHEA-S) and testosterone. We found that all three hormones explained variance in PGV development over and above age. In all cases, associations were stronger in females. Our findings suggest a key role for the hormones of adrenarche in PGV development. Tuong-Vi Nguyen McGill University, Canada

Prenatal masculinization of the auditory system in infants: the MIREC-ID study

Sex differences in inner-ear function are detectable in infants, notably through the measurement of otoacoustic emissions (OAEs). Prevailing theories posit that prenatal exposure to high levels of androgens in boys may weaken OAEs, and that this phenomenon may predominantly affect the right ear/left hemisphere (Geschwind-Galaburda (GG) hypothesis). Yet, actual tests of these models have been difficult to implement in humans. Here we examined the relationship between markers of fetal androgen exposure collected at birth (anogenital distances (AGD); penile length/width, areolar/scrotal/vulvar pigmentation) and at 6 months of age (2nd to 4th digit ratio (2D:4D)) with two types of OAEs, click-evoked OAEs (CEOAEs) and distortion-product OAEs (DPOAEs) (n=49; 25 boys; 24 girls). We found that, in boys, scrotal pigmentation was inversely associated with the amplitude and reproducibility of CEOAEs in the right ear at 4 kHz, with trends also present in the same ear for mean CEOAE amplitude and CEOAE amplitude at 2 kHz. Penile length was inversely associated with the mean amplitude of DPOAEs in both the right and left ears, as well as with DPOAE amplitude in the right ear at 2 kHz and the reproducibility of CEOAEs in the left ear at 2.8 kHz. Finally, AGD-scrotum in boys was positively associated in boys with the amplitude of DPOAEs in the left ear at 2.8 kHz. Unexpectedly, there were no sex differences in the amplitude or reproducibility of OAEs, nor, in girls, any associations between androgenic markers and auditory function. Nonetheless, these findings, reported for the first time in a sample of human infants, support both the prenatal-androgen-exposure and GG models as explanations for the masculinization of auditory function in male infants.

Janice Juraska University of Illinois, USA

Cortical reorganization during adolescence: what the rat can tell us about the cellular basis

The human cerebral cortex decreases in volume during adolescence while the underlying white matter increases. These changes also occur in the adolescent/peripubertal rat prefrontal cortex, where synapses, dendrites and neurons are pruned peripubertally. These decreases are larger in females and more definitively tied to puberty. In addition, perineuronal nets that alter the efficacy of inhibitory interneurons increase in both sexes but female puberty changes the time course. In contrast, the increase in white matter is due to myelination, not differences in the number or size of axons. Thus size changes are an amalgam of cellular alterations.

Flux Congress Poster Floor Plans - Day 1

Flux Congress Poster Floor Plans - Day 2

Poster Session 1 Friday August 30 5:00-7:00PM

Poster Session 2 Saturday August 31 5:00-7:00PM

Poster board numbers are indicated as follows: Poster Session – Theme – Board Number (Example: 2-A-10)

Location of the individual poster boards are indicated on poster board floor plans following the poster author index list. Poster set up and removal is the responsibility of the presenter. Please have your poster set up no later than 8:30AM on your scheduled presentation day and removed by 7:00PM each day. Any posters not removed by the designated time will be held at Registration until 5:00PM on Saturday.

Themes

- A Executive Functioning
- B Socioemotional Processing
- C Learning
- D Rewards/Motivation
- E Education
- F Memory
- G Environment (Stress, SES)
- H Brain Structure
- I Networks

- J Mechanisms (hormones, neurotransmitters, physiology)
- K Methods
 - L Clinical Populations
 - M Attention
 - N Language
 - O Brain Function
 - P Brain Connectivity
 - Q Other
 - S Symposia

For a complete list of poster abstracts please visit **www.fluxsociety.org**

Author	Poster No.	Author	Poster No.	Author	Poster No.
Abbas, Lamia	1-0-112	Ball, David	2-P-126	Billeke, Pablo	2-D-21
Abraham, Eyal	2-P-130	Banica, Iulia	1-I-50	Black, Kevin J	1-P-135
Achterberg, Michelle	2-0-97	Bansal, Ravi	2-I-49	Blair, Clancy	1-J-55, 1-M-87, 2-G-30
Adamek, Jack H	2-0-93	Baranger, David	2-1-48, 2-1-48	Blakemore, Sarah-Jayne	1-L-68, 2-B-5, 2-M-84
Adebimpe, Azeez	1-I-48, 1-P-128, 2-J-54	Barch, Deanna M	1-G-33, 1-H-47, 1-I-49,	Blomkvist, Anna	1-A-3
Adise, Shana	1-K-62		1-0-106, 1-0-107, 2-P-143	Bloom, Paul A	1-G-32, 2-D-17, 2-F-24,
Adolph, Karen E	1-K-58	Barendse, Marjolein	1-0-110		2-G-29
Ahmed, Saz	2-B-5	Barkley-Levenson, Emily E	2-D-14	Boardman, James P	1-L-63, 2-L-67, 2-M-87
Ajodan, Eliana L	1-D-17	Barnes Emily D	1-D-17 1-P-13/	Boddaert, Nathalie	2-L-61
Al-Zughoul, Ahmad B	2-L-71, 2-L-71	Barny Kolly P	1-R-9	Bodurka, Jerzy	1-0-100
Alberini, Cristina	1-J-55	Baccott Danielle S		Boisgontier, Jennifer	2-L-61
Alessandri, Michael	1-P-137, 2-L-76, 2-P-135	Dassett, Damene S	2-P-128	Bone, Jessica K	1-L-68
Alexopoulos, Dimitrios	2-P-129	Batalle, Dafnis	1-L-74	Bonthrone, Alexandra F	2-N-92
Alkire, Diana	2-K-59, 2-P-118	Bauer, Daniel J	2-Н-33	Bookheimer, Susan	1-0-112, 1-P-140, 2-P-115, 2-P-138
Allard, Tamara L	1-H-40	Baum, Graham L	1-I-48, 1-P-128	Booth James R	2-F-113, 2-F-138
Allen, Nicholas B	1-0-110, 2-0-98	Bavelier, Daphne	1-C-9	Borges Hector	2-P-116
Almy, Brandon	1-D-18, 1-D-22	Bayer, Mareike	1-E-24	Bornkessel-Schlesewsky	1-0-94
Altarelli, Irene	1-C-9	Beard, Sarah J	2-0-100, 2-0-96	Ina	1054
Ambrosi, Claudia	2-P-122	Bearden, Carrie E	1-P-114, 2-P-134	Boroshok, Austin L	2-0-102
Ammar, Zeena	1-H-35	Bechara, Antoine	2-D-14	Borst, Grégoire	1-A-1, 1-H-38, 2-A-2
Amso, Dima	1-M-86	Beck, Ann-Kathrin	1-F-27	Bos, Dienke J	1-L-67, 1-O-111
Anderson, Afrouz	1-Q-146	Behar, Diana	2-P-116	Botdorf, Morgan	1-H-40, 2-H-38, 2-H-44
Andrews, Jack	1-P-121, 1-P-121	Beltrano, Winnica	1-0-95	Botteron, Kelly N	2-L-80
Ansari, Daniel	1-H-38	Beltz, Adriene M	1-P-124	Bourque, Josiane	1-H-34, 2-J-54
Arfer, Kodi B	1-G-33	Benikos, Nicholas	2-D-12	Bouvette-Turcot,	2-L-80
Arrendondo, Maria	2-S-148, 2-S-150	Benjamin, Amanda	2-G-26	Andree-Anne	
Arora, Manish	2-P-122	Bennett, Marc	2-B-5	Brady, Shaina P	2-N-91
Ashburn, Sikoya M	2-0-101	Berger, Estelle	2-S-147	Brandeis, Daniel	1-0-111
Aslin, Richard	2-S-150	Berger, Eva	1-0-96	Brandes-Aitken, Annie	1-J-55, 1-M-87, 2-0-105
Astle, Duncan	1-H-36, 1-L-79	Berkman, Elliot T	2-0-104	Brandner, Philip	1-B-4
Austin, Christine	2-P-122	Berman, Karen F	1-L-65	Brandon, Jacqueline	2-N-92
Badran, Rina	2-P-116	Bermudez, Maria	2-K-55, 2-K-56	Braren, Stephen	1-J-55, 1-M-87, 2-0-105
Baker, Amanda E	2-D-13	Bernier, Rachel A	1-P-126	Bray, Signe	1-0-95
Baker, Kate	1-L-79	Bhutani, Neha	1-H-41	Breiner, Kaitlyn S	1-D-13
Bakermans-Kranenburg,	1-Q-145, 2-0-97	Bianco, Cat	1-K-58	Brenner, Rebecca G	1-P-136
Marian J				Breslin, Florence J	1-H-46, 2-P-123

Author	Poster No.
Brian, Eleanor	2-K-55, 2-K-56
Breslin, Florence J	1-H-46, 2-P-123
Brian, Eleanor	2-K-55, 2-K-56
Bricken, Cheyenne	1-I-51, 2-H-33, 2-H-33
Brinkman, Sally	1-0-94
Brislin, Sarah	2-K-57
Brito, Natalie	2-G-27, 2-N-91, 2-0-105
Britton, Jennifer C	1-P-137
Brkic, Diandra	1-L-79, 1-P-129
Brooks-Gunn, Jeanne	1-P-124
Brotman, Melissa A	1-0-98
Brown, Kayla	2-M-83
Bruchhage, Muriel M	1-0-111
Brudner, Emily G	2-D-18
Brvant, Annie	2-L-70
Bryce, Nessa	1-P-130
Bulgarelli, Chiara	2-S-145
Buitelaar, Jan K	1-0-111
Bunge, Silvia A	1-K-59, 2-C-11, 2-P-142, 2-S-144
Burke, Sarah	1-B-4
Burris, Jessica L	2-M-85
Burt, S. Alexandra	2-P-117
Buss, Claudia	2-P-124, 2-P-126
Buss, Kristin A	2-M-81, 2-M-83, 2-M-85
Byrne, Michelle L	1-0-110, 2-0-98
Caballero, Camila	1-H-44, 1-L-73
Cachia, Arnaud	1-H-38, 2-A-2
Caffo, Brian	2-L-68, 2-P-132
Cagna, Giuseppa	2-P-122
Calabro, Finnegan J	2-A-1, 2-I-47, 2-J-51, 2-J- 52, 2-O-110, 2-P-120
Calkins, Monica E	1-L-71, 2-J-54
Callaghan, Bridget L	2-F-24
Camacho, M. Catalina	2-L-73
Camacho, Nicolas	2-D-17, 1-G-32, 2-G-29
Camarda, Anaëlle	1-A-1
Canada, Kelsey L	2-H-38
Cánepa, Eduardo T.	2-L-69
Cardinale, Elise M	1-0-98
Carskadon, Mary A	2-P-142
Casey, BJ	1-0-106, 2-P-121
Cassidy, Joe R	2-H-34
Cassotti, Mathieu	1-A-1
Cechaviciute, Aiste	1-B-7
Cecil, Kim	2-L-77
Cesano, Michela	1-L-74
Cetkovitch, Marcelo	2-L-69
Chad-Friedman, Emma	2-H-44
Chahal, Rajpreet	2-0-100, 2-0-96, 2-P-131
Chaku, Natasha	1-B-8, 1-D-15
Chan, Candace	1-P-140
Chan, Linette	1-C-11
Charron, Sylvain	2-A-2

Author	Poster No.
Chavez, Samantha	1-0-110
Chen, Bosi	2-P-137
Chen, Christine	2-0-111
Chen, Lang	2-L-71
Cheng, Theresa W	1-0-110, 1-P-121
Cherry, Joseph B	1-L-76
Chew, Andrew	2-N-92
Choudhury, Suparna	1-H-41
Choy, Tricia	1-G-32, 2-D-17, 2-F-24, 2-G-29
Chronaki, Georgia	2-D-12
Chung, Megan Wing Shar	n 1-G-30
Church, Jessica A	1-M-83, 1-P-135, 2-M-82, 2-P-112
Chylinski, Daphne	2-C-10
Cicchetti, Dante	1-G-29, 2-B-8, 2-G-32
Cieslak, Matthew	1-I-48, 1-P-128
Clark, Dav	1-L-72
Clark, Duncan B	2-0-110
Clark-Whitney, Elysha	1-D-17, 1-P-134
Clarke, Ben	1-K-56, 1-P-120
Clarkson, Tessa	1-0-104
Coelho Milani, Ana	2-P-136
Carolina	
Cohen, Alexandra O	1-C-10, 1-O-106, 2-D-20, 2-F-25
Cohen, Jessica	1-I-51, 1-P-113, 2-H-33, 2-L-75, 2-P-140
Cohen-Gilbert, Julia E	2-B-8
Cohodes, Emily M	1-L-73
Colaizzi, Janna	1-H-46
Collins, Paul	1-D-22, 2-I-46
Conley, May I	1-0-106
Connell, Arin	1-0-97
Conrad, Benjamin N	1-P-141
Conrod, Patricia J	1-H-34
Constable, R. Todd	2-P-121
Cook, Philip A	1-P-128
Cooper, Emily A	2-0-102
Cooper-White, Macrina	1-0-108
Cope, Lora	2-K-57
Corbo, Daniele	2-P-122
Cordero-Grande, Lucilio	2-N-92
Cordova, Michaela	2-P-143
Cornejo, M. Daniela	1-0-106
Correa, Adriana	2-P-136
Cosgrove, Kelly T	1-0-100, 2-P-123
Cosme, Danielle	1-0-110, 2-0-104
Counsell, Serena J	1-L-74, 2-N-92
Coyle, Brendan E	1-P-116, 1-P-127
Craske, Michelle	1-P-140
Crocetti, Deana	1-K-60, 1-K-61, 2-L-74, 2-L-77, 2-L-79, 2-0-111
Crompton, Catherine J	2-L-62
Crone, Eveline A	1-B-4, 1-H-37, 2-E-22, 2-O-97
Cubillo, Ana I	1-0-96

Author	Dector No.
Cul, Zaixu	1-I-48
Cuiver, Joseph P	1-N-93, 2-0-109
	1-0-112, 1-P-140, 2-P-138
Curry, Marie-Laure	2-L-01
Cutting, Laurie	1-K-59
Cyr, Peppar	1 F 27
	1-F-27
D'Ivieno, Anna D'Souza, Nibarika S	1 0 122
Dodhar Alain	1 U 24
	2-5-1/7
Daini, Koli Daiani, Dina	1-P-137
Dalaleish Tim	2-B-5
Danretto Mirella	1-0-112 1-P-140 2-P-115
	2-P-138
Davachi, Lila	2-F-24
Davatzikos, Christos	1-I-48
David, Weissman	2-P-131
Davidesco, Ido	2-S-145
Dávila, Diego G	1-P-128
Davis, Kaley	1-P-132
Davis, Rachael V	1-N-91
Davis, Zachary J	1-C-10
de la Fuente, Laura A	2-L-69
de Queiroz Campos, Gabriela	2-P-142
de Water, Erik	2-P-122
Dean, Bethan L	2-L-67
Debnath, Ranjan	1-G-28, 2-L-63
DeCross, Stephanie N	2-0-94, 2-P-139
Dehaene-Lambertz, Ghislaine	1-C-9
DeJoseph, Meriah L	1-G-29, 2-G-32
Dekhtyar, Maria	2-S-151
Delalande, Lisa	2-A-2
Delaney, Scott	1-H-45, 1-H-45
Delgado, Mauricio R	2-D-18
Delgado Reyes, Lourdes	2-H-34, 2-H-35
Demers, Lauren	1-G-29, 2-B-8, 2-B-8
Demeter, Damion V	2-P-112
Dennis, Emily L	1-H-42
Deoni, Sean	2-H-34, 2-H-35
Desai, Pooja M	2-G-27, 2-H-40
Deville, Danielle C	1-0-100
Dewey, Deborah	1-0-95
Dick, Anthony S	2-P-116
Dickstein, Daniel P	2-P-142
Digard, Berengere G	2-N-89
Dikker, Suzanne	2-S-145
Dirks, Bryce R	1-P-137, 2-L-76, 2-P-135, 2-P-135
Dirks, Melanie	1-M-84
Dmitrieva, Olesya	1-0-95
Do, Kathy T	2-B-6, 2-B-7
Do, Quyen	1-0-98
Dombrovski, Alexandre Y	2-L-64

Author	Poster No.
Dorfman, Hayley	2-D-20
Dorriere, Valérie	2-A-2
Dosenbach, Nico U	1-P-135, 2-P-129, 2-P-143
Dotterer, Hailey L	1-P-124
Dougherty, Lea R	2-H-44
Doyle, Olivia	2-P-143
Dozier, Mary	1-A-3
Dr. Pérez-Edgar, Koraly	2-M-83
Droutman, Vita	2-D-14
Ducharme, Simon	2-L-80
Duell, Natasha	1-J-54
Dufford, Alexander	2-H-41
Duffy, Kelly A	1-P-113, 2-L-75
Duncan, John	2-C-10
Dunning, Darren	2-B-5
Durston, Sarah	1-L-67, 1-O-111
Dziobek, Isabel	1-E-24
Dziura, Sarah	2-K-59
Earl, Eric	1-0-106, 2-P-143
Edden, Richard A	1-0-109, 2-L-77
Eden, Guinevere F	1-H-39, 2-H-37, 2-O-101
Edwards, David A	1-L-74, 2-N-92
Eggebrecht, Adam	1-I-49, 1-N-93, 2-L-66, 2-0-109, 2-P-143
Eisenberg, Daniel P	1-L-65
Eisenberger, Naomi I	1-0-108
El Damaty, Shady	1-P-122, 2-H-42
Elison, Jed	1-D-18
Elliott, Mark A	1-P-128, 2-J-54
Ellmann, Camila	2-L-69
Elsayed, Nourhan M	1-0-107
Engelhardt, Laura E	1-M-83, 2-M-82, 2-P-112
Enticott, Peter	2-B-4
Entringer, Sonja	2-P-124, 2-P-126
Eom, Kelly H	2-P-140
Erickson, Craig	1-L-66
Ermanni, Briana	2-M-81, 2-M-83
Espenhahn, Svenja	1-0-95
Espinoza-Heredia, Claudia	1-P-116, 1-P-127
Ethridge, Paige	2-D-16
Euser, Saskia	1-Q-145
Evans, Alan	1-H-41, 1-K-59
Evans, Gary	2-H-41
Evans-Williams, Claire V	2-L-62
Ewell, Arcadia	1-H-40
Ewen, Joshua B	2-L-68, 2-L-68, 2-0-93
Fair, Damien A	1-I-48, 1-K-57, 1-O-106, 2-P-124, 2-P-126, 2-P-143
Fan, Yong	1-I-48
Fandakova, Yana	2-C-11, 2-S-144, 2-S-146
Farah, Rola	1-P-118
Feczko, Eric J	1-K-57, 1-O-106, 2-P-126, 2-P-143
Fehr, Ernst	1-0-96
Feijó Mello, Marcelo	2-P-136

Author	Poster No.
Ferleger, Samantha R	1-C-12
Fields, Andrea	1-G-32, 2-D-17, 2-F-24, 2-G-29
Filippi, Courtney A	2-P-114
Findling, Robert	1-L-72
Finn, Amy S	2-P-141
Fishbein, Diana H	1-P-122, 2-H-42
Fishburn Frank	1-1-69
Fishell Andrew K	1-N-93 2-0-109
Fisher Phil A	1-P-121
Fishman Inna	2-D-127
Fishinan, Inna	1-1-52
	1 0 110 1 0 121
Flather Watcon Suc	
Fletcher-Watson, Sue	2-L-67, 2-M-87, 2-N-89, 2-N-89
Flournoy, John C	1-0-110, 1-P-121, 1-P-130
Flowers, D L	1-H-39
Flynn, Emma	2-L-62
Foord, Careen N	2-G-31, 2-G-31
Foran, Will	2-J-51, 2-J-52, 2-P-120
Foran, William	2-0-110
Forbes, Erika	2-I-48, 2-P-131
Forbes, Samuel H	2-H-34, 2-H-35
Ford, Aiden	1-H-35
Forde, Jasmine C	1-C-12, 2-O-102
Foulkes, Lucy	2-B-5
Fowler, Carina H	2-L-72
Fox, Nathan A	1-G-28, 1-L-64, 1-O-101, 2-P-114
Frangulova, Katerina E	2-G-31
French, Roberto C	2-B-3, 2-J-50
Fry, Cassidy	1-D-19
Fu, Xiaoxue	2-M-81, 2-M-83
Fuchs, Bari A	2-K-55, 2-K-56, 2-K-56
Fuliani. Andrew J	1-B-4, 1-0-108
Gaab. Nadine	2-H-45
Gabrieli, John D	1-N-90, 1-N-92
Gaffrey Michael S	2-1-72
Gagoski Borian	2-H-45
Galassi Anthony	2-P-143
Galvan, Adriana	1-D-13, 1-D-20, 1-O-108, 2-D-13
Gard. Arianna M	2-P-117
Garic, Dea	2-P-116
Gasparotti, Roberto	2-P-122
Gasser, Camille	2-F-24
Gates, Kathleen M	2-K-60
Gathercole Susan F	2-F-23
Gatzko-Kopp Lisa	1-D-10
Gearin Brian	1.P.120
	1-1-44, 1-L-/3
Gener, Charles	1-D-19, 1-K-02, 1-U-105
Gerhard, Danielle	1-P-125
Gershman, Samuel J	2-D-20

Author	Poster No.
Ghetti, Simona	1-K-59
Gibson, Lisa	1-G-32, 2-D-17, 2-G-29
Giebler Melissa	1-N-90
Gilbert, Donald I	2-1-77
Cilbert, Bonard E	1140
	2 0 120
Gilmore, Adrian w	2-P-129
Glimore, John H	2-P-124
Ginnell, Lorna	1-L-63, 2-L-67, 2-M-87
Glenn, Dana	1-0-101, 1-0-101
Glover, Morgan	1-C-10, 2-D-20
Godfrey, Kate	1-0-95
Goetschius, Leigh G	1-P-124
Gold, lan	1-H-41
Goodman, Emma	1-L-73
Gooskens, Bram	1-0-111
Gordon, Evan M	2-P-112, 2-P-129
Gotlib, Ian H	1-H-42, 1-H-43, 1-P-138, 2-L-78
Govindaraian. Lakshmi N	1-M-86
Grabell, Adam P	2-K-58, 2-K-58
Graham. Alice	1-K-57, 2-P-124, 2-P-126
Grannis, Connor K	2-B-3, 2-0-108, 2-0-108
Grasemann Illi	2-S-151
Gratton Caterina	1-P-135
Graziano Paulo	2-P-116
Creaves Achley	2 0 105
Greaves, Ashiey	1 0 112 1 D 140 2 D 115
Green, Shulamite	2-P-138
Greene, Abigail S	2-P-121
Greene, Deanna J	1-P-135, 2-P-129, 2-P-143
Gregory, Michael D	1-L-65
Grewal, Jeevun	2-H-34
Griffin, Cait	2-B-5
Griffiths, Kirsty	2-B-5
Grisanzio, Katherine A	1-B-6
Grogans, Shannon E	1-L-65
Grotzinger. Hannah M	1-N-90, 1-N-90, 1-N-92
Guassi Moreira, Joao F	1-0-102, 2-D-15
Guillois. Bernard	2-A-2
Gunnar. Megan R	2-0-107
Gunther Kelley F	2-M-81 2-M-83
Gunta Mohan	1-P-114
Gur Baquel F	1.1.48 1.1.71 2.1.54
Gur, Rubon C	1-1-48, 1-1-71, 2-3-54
Gurackie Todd M	1 0 10
	2 70
	2-L-70
	1 72
	1-1-10
Haese, Andre	1-1-2/
Hart, Stephanie L	1-G-30
Hagler, Donald J	1-0-106
Hajnal, Joseph V	2-N-92
Hall, Shana A	2-P-140
Hallquist, Michael N	2-L-64
Halpern, David	1-C-10

Author	Poster No.
Hamborg, Madeline R	1-L-65
Han, Danyang	1-K-58
Hancock, Roeland	1-G-30
Haneuse, Sebastien	1-H-45
Haque, Rashidul	2-H-45
Hardee, Jillian	2-K-57
Harden, K. Paige	2-M-82, 2-P-112
Hare, Todd A	1-0-96
Harmon, Chelsea	2-D-17, 2-F-24, 2-G-29
Harrewijn, Anita	1-L-64, 1-0-98
Harris, Ashley	1-0-95, 2-L-77
Hart, Brian	1-D-22
Hart, Yuval	1-C-12
Hartley, Catherine A	1-C-10, 2-D-20, 2-F-25
Hastings, Paul	2-0-100, 2-P-131
He, Jason L	1-0-109
He. Xiaofu	2-H-40
Hect. J L	1-P-116
Hect, Jasmine L	1-P-127
Heffer. Taylor	1-0-144, 2-D-19
Hegarty, Catherine	1-P-114
Heim. Christine	1-P-126
Hein, Tyler C	1-P-124
Heitzeg, Mary	2-K-57
Heleniak, Charlotte	1-G-32, 2-D-17, 2-G-29, 2-O-99
Henderson, Heather	1-L-64
Hennefield, Laura	1-G-33
Henry, Teague R	1-P-113
Hermes, Henning	1-0-96
Hernandez, Arturo	2-S-148
Hernandez, Cristian	1-L-73
Herstic, Amira Y	1-P-115
Herzberg, Max P	2-0-107
Hess, Sage	1-G-32
Hetherington, Hoby	2-J-51, 2-J-52
Hillebrand, Arjan	1-P-129
Hipwell, Alison	2-P-131
Ho, Tiffany C	1-H-43, 1-P-138, 2-L-78
Hoeft, Fumiko	1-G-30
Hollis, Kaitlin	1-A-3
Holmes, Joni	1-L-77, 2-C-10, 2-E-23, 2-L-70
Hong, Seok-Jun	1-H-44, 2-H-36
Horien, Corey	2-P-121
Horn, Paul S	2-L-77
Horowitz-Kraus, Tzipi	1-P-117, 1-P-118
Horton, Megan K	2-P-122
Houdé, Olivier	2-A-2
Hoyos, Patricia M	1-L-78
Hoyt, Lindsay	1-D-15
Huang, Jeff	1-A-3
Hubbard, Edward M	1-P-123
Huddlestone, David	2-L-77
Huettel, Scott	1-D-16

Author	Poster No.
Huffmeijer, Rens	1-Q-145
Hughes, Emer	2-N-92
Hung, Andy	2-B-3
Hunt, Ruskin H	1-G-29, 2-B-8, 2-G-32, 2-O-107
Hwang, Hyesung Grace	1-G-28
Hyde, Luke W	1-P-124, 2-P-117
lbañez, Agustín	2-L-69
Ibarra, Cynthia	2-P-137
Icenogle, Grace	1-G-31
lgelstrom, Kajsa	1-L-78
Imhof, Andrea	1-N-90
Insel, Catherine	1-D-21
lp, Ka l	1-J-53
Islam, Nazrul	2-H-45
Janssen, Tieme	2-S-145
Jarcho, Johanna M	1-0-104
Jeste, Shafali S	2-P-115
Jimenez, Virnaliz	2-G-26
Jirsaraie, Robert	1-P-128
Johnson, Maggie J	1-0-100
Jolles, Dietsje	1-P-114, 1-P-114, 2-P-134
Jones, Chloe	1-G-30
Jones, Rebecca M	1-D-17, 1-P-134
Jones, Warren	1-H-35
Jorgensen, Nathan A	2-G-28
Jung, Jiwon	1-0-112, 1-P-140
Jung, Yaelan	2-P-141
Juranek, Jenifer	2-M-82, 2-P-112
Kakon, Shahria Hafiz	2-H-45
Kalra, Priya	1-P-123, 1-P-123
Kaplan, Brianna E	1-K-58
Kaplan, Sydney	1-P-136
Kappenman, Emily S	1-G-33
Karim, Helmet T	2-L-73
Karlsgodt, Katherine H	1-P-114, 2-P-134
Kasparek, Steven W	2-P-139
Kastner, Sabine	1-L-78, 1-M-81, 1-M-82
Kavenagh, Phil	1-0-94
Keenan, Kate	2-P-131
Keller, Kathleen L	2-K-55, 2-K-56
Kelly, Christopher J	2-N-92
Kelly, Danielle	1-G-33
Kenley, Jeanette	1-A-2, 1-P-136
Kepinska, Olga	1-G-30
Kerr, Kara L	1-0-100, 2-P-123
Khosravani, Neda	2-C-11, 2-S-144
Khundrakpam, Budhachandra	1-H-41, 1-K-59
Kiar, Gregory	1-K-59
Kievit, Rogier	2-E-23
Kim, Hannah	2-P-123
Kim, Na Yeon	1-L-78, 1-M-81
Kim, Pilyoung	2-H-41
Kim, Soyoung	1-P-135

Author	Poster No.
Kimbler Adam	1-1-70
Kinnear Mikaela	2-P-137
Kinnenhan Jonathan S	1-1-65
Kirby Laura A	1-B-7
Kircanski Katharina	1-1-64 1-0-98
Kiren, Swathi	2-S-151
Kirlic, Namik	1-H-46
Klapwijk, Eduard T	1-H-37
Koch. Carolyn	1-P-115, 2-L-65
Kohler, Mark	1-0-94
Kohn, Philip D	1-L-65
Kolijn, Laura	1-0-145
Koopman-Verhoeff, M. Elisabeth	2-P-142
Kovelman, loulia	2-S-149
Krabbendam, Lydia	2-0-103
Kramer, John R	1-D-14
Kribakaran, Sahana	1-L-73
Kubzansky, Laura	1-H-45
Kuhney, Franchesca S	1-L-65
Kujawa, Autumn	1-G-33
Kulla, Artenisa	1-P-138, 2-L-78
Kumar, Swapna	2-H-45
Kundakovic, Marija	1-P-132
Kuperman, Samuel	1-D-14
Kuskowski, Michael	1-D-22
Kuyken, Willem	2-B-5
Kwon, Seh-Joo	2-B-6
Lakhan-Pal, Shreya	2-G-32
Lambert, Hilary K	1-B-6, 2-H-39
Lammers, Luke A	1-D-18
Langbehn, Douglas R	1-D-14
Laroque, Flavie	1-H-34
Larrain-Valenzuela, Josefina	2-D-21
Larsen, Bart	1-I-48, 2-J-54, 2-P-120
Laube, Corinna	2-C-11, 2-S-144
Laumann, Timothy O	2-P-129
Laws, Marissa L	1-P-122
Lean, Rachel E	1-A-2, 1-P-136
Lee, Francis S	1-P-125, 2-C-9
Lee, Nikki	2-0-103
Leibenluft, Ellen	1-0-98
Leibowitz, Scott	2-B-3, 2-J-50, 2-0-108
Lemaitre, Hervé	2-L-61
Lenniger, Carly J	1-P-116, 1-P-116, 1-P-127
Leonard, Julia	1-C-12, 1-C-12, 1-N-92, 2-P-125, 2-P-128
Leschak, Carrianne J	1-0-108
Leung, Jovita	2-B-5
Levin-Schwartz, Yuri	2-P-122
Levinson, Tess	1-L-71, 1-L-71
Lew, Ji Min	2-L-80
Lewis, Gemma	1-L-68
Lewis, Glyn	1-L-68

Author	Poster No.
Lewis, Toni L	1-P-116, 1-P-127
Lewis-Peacock, Jarrod A	2-P-112
Leyton, Marco	1-H-34
Li, Hongming	1-I-48
Li, Longchuan	1-H-35
Li, Rosa	1-D-16
Liberzon, Israel	2-H-41
Ligneul, Romain	2-G-31
Lin, Weili	1-I-51, 2-H-33
Lind, Teresa	1-A-3
Lindenberger, Ulman	2-C-11, 2-S-144
Lindquist, Kristen A	2-G-28
Linke, Annika	2-P-137
Linocci, Valentina	2-P-116
Little, Charlotte	2-L-80
Liu, Janelle	2-P-115
Liu, Yanni	1-J-53
LoBue, Vanessa	2-M-85
Lokhandwala, Sanna	1-H-40
Lopez-Duran, Nestor	1-P-124
Lozano, Melanie C	1-H-39, 2-0-101
Lu, Hongjing	2-D-13
Luby, Joan L	1-G-33, 1-I-49, 1-O-107
Lucchini, Roberto G	2-P-122
Luciana, Monica	1-D-18, 1-D-22, 2-I-46
Luna, Beatriz	2-A-1, 2-I-47, 2-J-51, 2-J-52, 2-O-110, 2-P-120, 2-P-143
Lundstrom, Johan	1-A-3
Luo, Yu	2-P-113
Lynch, Charles	1-P-134
Lynn, Andrew	1-M-86, 1-M-86
Ma, Yue	1-J-52
Mackey, Allyson P	1-C-12, 1-N-92, 2-O-102, 2-P-125, 2-P-128
Mackey, Eleanor	1-L-76
MacNeill, Leigha A	2-M-81, 2-M-83
Maecker, Holden T	2-L-78
Magee, Kelsey E	1-0-97
Magis-Weinberg, Lucía	2-S-146, 2-S-147
Maguire, Mandy J	1-0-103, 2-N-90
Mahone, E. Mark	1-K-60, 2-0-111
Mahone, Mark	2-L-74
Mallett, Remington	2-P-112
Mandell, Jeffrey D	1-L-73
Marek, Scott	2-P-129, 2-P-131, 2-P-143
Mareva, Silvana	1-L-77
Markow, Zachary E	2-0-109
Marr, Mollie C	1-K-57, 2-P-126, 2-P-126
Marshall, Emily	2-L-76
Martin, Alex	1-L-80
Martinez, Steven A	1-0-106
Martinez Molina, Maria Paz	2-D-21
Martz, Meghan	2-K-57
Mascaro, Lorella	2-P-122

Author	Poster No.
Mascialino, Sophia	2-G-31
Masterson, Travis	2-K-55, 2-K-56
Matejko, Anna	1-H-38, 2-H-37, 2-O-101, 2-O-101
Mattfeld, Aaron T	1-L-70
Mattson, Whitney I	2-B-3, 2-J-50, 2-0-108
Matusz, Pawel J	1-M-85, 2-M-86, 2-S-146
Mavroudi, Efi	2-L-79
McAuliffe, Danielle	2-0-93
McCandliss, Bruce	2-S-146
McCauley, Sarah	1-L-73
McClure, Patrick	1-L-80
McCormick, Ethan	1-J-54, 2-B-6, 2-B-7, 2-G- 28, 2-K-60, 2-K-60
McCracken, James T	2-L-80
McKay, Cameron C	1-H-39
McLanahan, Sara S	1-P-124
McLaughlin, Katie A	1-B-6, 1-P-130, 2-H-39, 2-H-43, 2-0-106, 2-0-94, 2-0-99, 2-P-139, 2-Q-143
McLoyd, Vonnie C	1-P-124
McMakin, Dana L	1-L-70
McMorris, Carly	1-0-95
McNaughton, Kathryn A	1-B-7, 2-K-59
Meissner, Tobias W	1-P-142
Mekhanik, Anthony	1-H-44, 2-H-36
Melamed, Tina C	2-N-90
Meltzoff, Andrew N	2-0-106
Men, Virany	1-K-56, 1-P-120
Mendez Leal, Adriana S	1-0-102, 2-D-15
Mennigen, Eva	1-P-114, 2-P-134
Menon, Vinod	2-L-71
Mensen, Vincent T	1-0-111
Merchant, Junaid S	1-B-7, 2-K-59
Merkley, Rebecca	2-M-86
Mervis, Carolyn B	1-L-65
Merz, Emily C	2-H-40
Messenger, Brice	2-L-79
Mevel, Katell	2-A-2
Meyer, Heidi C	2-C-9
Meyer, Jerrold S	2-G-27, 2-H-40
Meyer, Marlene	1-G-28
Michalska, Kalina J	1-0-101
Milham, Michael P	1-H-44, 2-H-36, 2-P-127
Miikkulainen, Risto	2-S-151
Miller, Gillian	2-L-79
Miller, Jonas G	1-H-42
Miller, Lynn	2-D-14
Miller, Ryland	2-P-143
Mills, Kathryn L	1-P-121
Miranda-Dominguez, Oscar	1-К-57
Misaki, Masaya	1-0-100
Mitchell, Colter	1-P-124
Mitchell, Daniel J	2-C-10
Mitchell. Mackenzie E	2-M-82

Author	Poster No.
Mobasser, Arian	2-0-104
Moberg, Paul J	2-J-54
Monk. Catherine	2-1-49
Monk, Christopher S	1-P-124
Moore. Andrew J	1-0-100
Moore, Tyler M	1-I-48. 1-L-71. 2-J-54
Moraczewski. Dustin	1-B-7. 2-P-118
Morningstar, Michele	2-B-3, 2-J-50, 2-0-108
Morris. Amanda S	1-0-100. 2-P-123
Moser. Julia	1-F-26
Moses-Payne, Madeleine F	2-M-84
Mostofsky, Stewart H	1-K-60, 1-K-61, 1-L-72, 1-O-109, 1-P-113, 1-P-115, 1-P-133, 1-P-139, 2-L-65, 2-L-68, 2-L-74, 2-L-75, 2-L-77, 2-L-79, 2-O-111, 2-O-93, 2-P-132
Moyon, Marine	2-A-2
Murray, Micah M	1-M-85, 2-M-86
Murtha, Kristin	1-P-128
Muzik, Maria	1-J-53
Naaijen, Jill	1-0-111
Nadler, Evan P	1-L-76
Nahata, Leena	2-B-3, 2-J-50, 2-0-108
Nance, Melissa	2-1-48
Naomi, Jason S	1-P-137
Napoliello, Eileen M	1-H-39
Nash, Tiffany A	1-L-65
Nath, Niloy	1-0-95
Naumann, Sandra	1-E-24
Nebel, Mary Beth	1-P-113, 1-P-115, 1-P-133, 1-P-139, 2-L-75, 2-P-132
Nelson, Brady	1-0-104
Nelson, Charles A	2-H-45
Nelson, Eric E	2-B-3, 2-J-50, 2-0-108
Nelson, Steven M	2-P-129
Ng-Cordell, Elise	1-L-79
Nguyen, Tuong-Vi	2-L-80
Nicholas, Rosemary	2-L-79
Nielsen, Ashley N	1-P-135
Nigg, Joel T	1-K-57
Nikolaidis, Aki	2-P-127
Ninova, Emilia	1-0-102, 2-D-15
Noble, Kimberly G	2-G-27, 2-H-40, 2-N-91
Noll, Jennie G	1-P-126
Nomi, Jason S	2-L-76, 2-L-76, 2-P-135
Nook, Erik C	1-B-6
Noonan, MaryAnn P	1-C-11
Nosarti, Chiara	1-L-74, 2-N-92
Nugiel, Tehila	1-M-83, 2-M-82, 2-P-112
Nussenbaum, Kate	1-C-10, 2-D-20
O'Brien, Sinead	1-L-79, 2-C-10
O'Keeffe, Camilla	2-N-92
O'Leary, Daniel S	1-D-14
O'Muircheartaigh, Jonathan	1-L-74

Author	Poster No.
Oathes, Desmond J	1-P-128
Odriozola, Paola	1-L-73, 1-P-137
Ojha, Amar	1-H-43
Okada, Nana J	2-P-115
Oleas, Denise S	2-M-85
Olson, Alexandra	1-L-76
Olson, Lindsay	2-P-137
Opendak, Maya	1-A-3
Oppenheim, Catherine	2-A-2
Oppini, Manuela	2-P-122
Oranje, Bob	1-L-67, 1-O-111
Orfi, Isobel	2-L-80
Ortega, Dakota	2-P-124
Ortega, Mario	2-P-129
Ossmy, Ori	1-K-58
Ottenhoff, Myrthe	1-M-82, 1-M-82
Pacheco, Carolina	2-L-79
Papazaharias, Demetrios	2-P-122
Parikh, Nehal A	1-L-75
Park, Anne T	1-C-12, 2-O-102, 2-P-125, 2-P-128
Parker, Jenna	2-B-5
Parlade, Meaghan	1-P-137, 2-L-76, 2-P-135
Parolin Jackowski, Andrea	2-P-136
Parr, Ashley C	2-P-120
Patel, Meera	1-L-75, 1-L-75
Patterson, Genevieve	1-0-112
Paulus, Martin P	1-H-46, 2-P-123
Pauwels, Noémie	2-M-87
Peake, Shannon	1-P-121
Pearce, Alaina	1-L-76, 2-K-55, 2-K-55, 2-K-56
Pecsok, Maggie	1-L-78
Pedapati, Ernest V	1-L-66
Penaloza, Claudia	2-S-151
Pereira, Francisco	1-L-80
Perez-Edgar, Koraly	1-J-52, 2-M-81, 2-M-85
Perica, Maria I	2-J-51
Perino, Michael T	1-M-89
Perlman, Susan B	1-L-69, 2-L-73
Perrone, Anders	2-P-143
Perry, Rosemarie E	1-J-55, 1-M-87, 2-0-105
Peters, Megan A	1-0-101
Peters, Sabine	2-E-22
Petersen, Steven E	1-P-135
Peterson, Bradley	2-I-49
Petri, William A	2-H-45
Petrie, Daniel J	1-D-19, 1-D-19, 1-O-105
Peverill, Matthew	2-H-43
Pfeifer, Jennifer H	1-0-110, 1-P-121, 2-0-104, 2-0-98
Philips, Dominique	1-L-64
Picci, Giorgia	1-P-126, 2-H-42
Piiwaa, Kayla	1-P-128
Pillai, Ajay	2-L-79

Author	Poster No.
Pine, Daniel S	1-L-64, 1-O-101, 1-O-98, 2-P-114
Pines, Adam	1-P-128, 1-P-128
Pinsk, Mark	1-L-78
Placidi, Donatella	2-P-122
Planell-Mendez, lvette	1-M-82
Poirel, Nicolas	2-A-2
Politte, Laura C	2-P-140
Posner, Jonathan	2-P-136
Potvin, Stephane	1-H-34
Poudel, Sonali	1-0-103
Power, Jonathan D	1-P-134
Prater Fahey, Mahalia	1-D-21
Preißl, Hubert	1-F-26
Prettyman, Greer E	1-L-71
Price, Gavin R	1-P-141
Prinstein. Mitchell J	2-G-28
Protzner, Andrea	1-0-95
Prounis, George S	2-J-53
Prounis, Georger S	2-1-53
Puget Stenhanie	2-1-53
Pushparajah Kuberan	2-L-01 2-N-92
	1-0-109 2-1-77
Pulo, Filo Mario	1.0.20
	1 0 116 1 0 127
Qawasamen, Tamara J	1-P-116, 1-P-127
Qin, Snaozneng	2-L-71
Quach, Alina	2-0-110
Quarmley, Megan	1-0-104
Quinones-Camacho, Laura E	1-L-69, 1-L-69, 2-L-73
Raab. Hillary A	2-G-31
Rabagliati, Hugh	1-N-91
Rafferty Sean M	2-0-109
Raine Adrian	2-1-54
Raine, Adrian	1-1-76
Ralph Vyonne K	1-0-103 2-N-90
Ramiroz Julian	2 D 124
Rammez, Julian	1 90
Ramot, Michai	1 C 22 1 O 107
	1.0.100.2.0.121
	1-0-106, 2-P-121
Rasmussen, Jerod	2-P-124, 2-P-126
Ratliff, Erin L	1-0-100, 1-0-100
Kavi, Sanjana	2-2-114
Ravindranath, Orma	2-J-52
Raznahan, Armin	1-1-48
Read, Stephen	2-D-14
Rechtman, Elza	2-L-61, 2-P-122
Redcay, Elizabeth	1-B-7, 2-K-59, 2-P-118
Reimann, Gabrielle E	1-L-80
Rengarajan, Sundararaman	2-L-79
	1 11 45
Ressier, Kerry	1-n-45
ketsa, Unrysa	1-W-85
Reynolds, Rebecca	1-L-63
Reynolds, Sarah	2-2-131

Author	Poster No.
Richter Edward I	2-0-109
Rickard Morwenna	1-C-11
Riggall, Kate	1-0-94
Riggins, Tracy	1-H-40, 2-H-38, 2-H-44
Roalf, David R	1-I-48, 1-P-128, 2-I-54
Roberts, Nicole J	1-D-19, 1-K-62, 1-O-105
Robins, Richard	2-0-100, 2-P-131
Robinson, Josh	1-K-61
Robinson, Svdnev T	1-N-92
Rochowiak, Rebecca	1-P-115, 2-I-74, 2-I-79
Rodman. Alexandra M	2-H-39, 2-0-143
Roe. Mary Abbe	1-M-83, 2-M-82
Roell, Margot	1-H-38
Rogers, Christy R	2-G-26
Rogers, Cynthia E	1-A-2, 1-P-136
Rogers, Hopewell	1-L-73
Rogosch, Fred A	1-G-29. 2-B-8. 2-G-32
Roiser, Jonathan P	1-L-68
Romeo, Rachel R	1-N-90, 1-N-92
Romero Celia	1-P-137 2-L-76
Ropar. Danielle	2-L-62
Rosch, Keri S	1-P-139, 2-L-65, 2-L-65,
	2-P-132
Rose, Emma J	1-P-122, 1-P-126, 2-H-42
Rosen, Adon F	1-P-128
Rosen, Maya L	1-P-130, 2-H-43, 2-O-106, 2-P-139
Rosenberg, Monica D	1-0-106
Rosenberg-Hasson, Yael	2-L-78
Rosenblum, Kate	1-J-53
Ross, Garrett	1-P-121, 2-0-104
Rowe, Meredith L	1-N-92
Roy, Amy K	1-H-44, 1-P-132, 2-H-36
Rudolph, Karen D	2-G-26
Rudolph, Marc D	2-P-124
Ruparel, Kosha	1-L-71, 2-J-54
Rush, Sage	1-P-128
Rutherford, Mary A	2-N-92
Sabb, Fred	1-K-56, 1-P-120
Sacchi, Chiara	1-L-74
Saitovitch, Ana	2-L-61
Sakhardande, Ashok	2-B-5
Saletin, Jared M	2-P-142
Salinas, Cesar	2-D-21
Salo, Virginia	1-G-28
Salvia, Emilie	1-A-1, 2-A-2
Sambrook, Kelly A	1-P-130, 2-H-43, 2-0-106, 2-0-99, 2-P-139
Sandre, Aislinn	1-I-50, 1-M-84
Santos Malavé, Gabriel F	1-L-76
Saragosa-Harris, Natalie M	2-F-25
Sarquez, Michell	2-M-85
Sarro, Emma	1-A-3
Sasse, Stephanie F	1-B-6

Author	Poster No.
Satterthwaite, Theodore D	1-I-48, 1-L-71, 1-P-128, 2-J-54
Scerif. Gaia	1-L-79. 1-M-85. 2-M-86
Scheinost, Dustin	2-P-121
Scheuplein, Maximilian	1-C-11
Schifsky. Emma	2-P-126
Schlaggar. Bradley L	1-P-135
Schleger, Franziska	1-F-26
Schmitt, Lauren M	1-L-66
Schneider, Julie M	1-0-103
Schreiber, Alison M	2-L-64
Schreier. Hannah M	1-P-126
Schroeder, Mariel L	1-N-93, 2-0-109
Schunk, Daniel	1-0-96
Schurmann, Sofia	2-L-69
Sciberras. Emma	2-B-4
Scult. Matthew A	1-D-17
Sedeño, Lucas	2-1-69
Segaran, Joshua	1-N-92
Serre. Thomas	1-M-86
Seungchan, Kim	1-M-86
Sevmour, Karen F	1-K-60, 1-I -72, 1-P-139,
	2-L-65, 2-L-75
Shalev, Idan	1-P-126
Shanley, Lina	1-K-56, 1-P-120
Sharkey, Rachel J	1-H-34
Shaw, Daniel S	2-I-48
Shen, Xinxu	1-C-10, 2-D-20, 2-F-25
Shenk, Chad E	1-P-126
Sheridan, Margaret A	1-I-51, 2-H-33, 2-H-39, 2-H-43, 2-P-140
Shields, Grant S	1-I-50
Shiels Rosch, Keri	2-L-75
Shimony, Joshua S	1-A-2, 2-P-129
Shinohara, Russell T	1-I-48, 1-P-128, 2-J-54
Shohamy, Daphna	1-G-32, 2-D-17
Shook, Devon A	1-0-111
Shultz, Sarah	1-H-35
Sijtsma, Hester	2-0-103
Silk, Jennifer S	1-0-100
Silk, Timothy J	2-B-4
Silver, Benjamin	1-D-17, 1-P-134, 1-P-134
Silvers, Jennifer A	1-0-102, 2-D-15, 2-F-24
Simmons, Cortney	1-G-31
Simmons, Kyle	1-0-100
Simon, Katrina R	2-H-40, 2-O-102
Simpson, John	2-N-92
Singh, Manpreet K	1-P-138
Sippel, Katrin	1-F-26
Sisk, Lucinda M	2-L-78
Siugzdaite, Roma	1-H-36, 2-S-145
Slavich, George M	1-I-50
Sliva, Danielle	2-H-45
Smith, Ashley R	1-0-98
Smith, Donald R	2-P-122

Author	Poster No.
Smith, Jolinda C	1-K-56, 1-P-120
Smyser, Christopher D	1-A-2, 1-P-136
Smyser, Tara A	1-A-2, 1-P-136
Snider, Kathy	2-P-143
Sollenberger, Nathan A	1-L-70
Soltesz, Fruzsina	2-D-12
Somerville, Leah H	1-B-6, 1-D-21
Song, Da-Yea	1-K-60
Sonuga-Barke, Edmund	2-D-12
Sonzogni, Silvina	2-L-69
Sorace, Antonella	1-N-91, 2-N-89
Sorcher, Leah K	1-C-12, 1-L-65
Spann, Marisa	2-1-49
Spencer, Hannah	1-L-73
Spencer, John P	2-H-34, 2-H-35
Spencer, Rebecca	1-H-40
Spinney, Sean	1-H-34
Sripada, Chandra	2-K-57
Stanfield, Andrew	2-N-89
Stecher, Ximena	2-D-21
Steinberg, Laurence	1-G-31
Stephens, Kate	2-B-4
Stoianova, Maria	1-P-122
Sturgeon, Darrick	2-P-126, 2-P-143
Styner, Martin	2-P-124, 2-P-126
Subar, Anni	1-0-98
Sullivan, Nicolette	1-D-16
Sullivan, Regina M	1-A-3
Sunshine, Isabel	1-G-30
Sussman, Tamara J	2-P-136, 2-P-136
Svoboda, Alexandra M	1-N-93, 2-L-66, 2-0-109
Swain, James	2-H-41
Sweeney, John A	1-L-66
Sylvester, Chad M	1-M-89, 1-P-136, 2-P-114
Tacchella, Jean-Marc	2-L-61
Tagliazucchi, Enzo	2-L-69
Takada, Megumi	1-N-92
Talcott, Joel	1-P-129
Tamm, Leanne	1-L-75
Tan, Aaron	1-P-139
Tang, Cheuk Y	2-P-122
Tashjian, Sarah M	1-D-20
Taylor, Rita L	1-H-47
CALM Team	1-H-36, 1-L-77, 2-E-23,
	2-L-70
MYRIAD Team	2-B-5
Telford, Emma J	1-L-63, 2-L-67, 2-M-87
Telzer, Eva H	1-J-54, 2-B-6, 2-B-7, 2-G- 26, 2-G-28, 2-K-60
Tervo-Clemmens, Brenden	2-A-1, 2-I-47, 2-O-110, 2-P-143
Thakkar, Kalpit	1-M-86
Theisen, Emma	1-A-3
Thijssen, Sandra	2-I-46
Thomas, Elina	2-P-124

Thomas, Kathleen M1-G-29, 2-B-8, 2-G-32, 2-O-107Thomason, Moriah E1-P-116, 1-P-127Thomsen, Kari2-K-58Tiedemann, Alyssa2-L-65Tiemeier, Henning1-H-45, 2-P-123Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-O-109, 1-O-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Thomason, Moriah E1-P-116, 1-P-127Thomsen, Kari2-K-58Tiedemann, Alyssa2-L-65Tiemeier, Henning1-H-45, 2-P-123Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-0-109, 1-0-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Thomsen, Kari2-K-58Tiedemann, Alyssa2-L-65Tiemeier, Henning1-H-45, 2-P-123Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-0-109, 1-0-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Tiedemann, Alyssa2-L-65Tiemeier, Henning1-H-45, 2-P-123Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-0-109, 1-0-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Tiemeier, Henning1-H-45, 2-P-123Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-0-109, 1-0-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Till Hoyt, Lindsay1-B-8Tissier, Cloelia2-A-2Tivadar, Ruxandra1-M-85Tommerdahl, Mark1-0-109, 1-0-95Tompary, Alexa2-F-24Tong, Tien T1-D-14, 1-D-14Tong, Yu2-P-127
Tissier, Cloelia 2-A-2 Tivadar, Ruxandra 1-M-85 Tommerdahl, Mark 1-0-109, 1-0-95 Tompary, Alexa 2-F-24 Tong, Tien T 1-D-14, 1-D-14 Tong, Yu 2-P-127
Tivadar, Ruxandra 1-M-85 Tommerdahl, Mark 1-O-109, 1-O-95 Tompary, Alexa 2-F-24 Tong, Tien T 1-D-14, 1-D-14 Tong, Yu 2-P-127
Tommerdahl, Mark 1-0-109, 1-0-95 Tompary, Alexa 2-F-24 Tong, Tien T 1-D-14, 1-D-14 Tong, Yu 2-P-127
Tompary, Alexa 2-F-24 Tong, Tien T 1-D-14, 1-D-14 Tong, Yu 2-P-127
Tong, Tien T 1-D-14, 1-D-14 Tong, Yu 2-P-127
Tong, Yu 2-P-127
T 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Iooley, Ursula A 1-C-12, 2-P-128
Torralvaa, Teresa 2-L-69
Torre, Gabrielle-Ann 2-H-37, 2-H-37
Torres, Armando 2-P-116
Toth, Sheree L 1-G-29
Tottenham, Nim 1-A-3, 1-G-32, 2-D-17, 2-F-24, 2-G-29
Tracy, Christopher H 2-0-109
Travis, Meika 2-B-3
Trentacosta, C 1-P-116
Trentacosta, 1-P-127 Christopher J
Tripathy, Kalyan 1-N-93, 2-0-109
Troller-Renfree, Sonva V 2-G-27, 2-N-91
Tsang. Tawny 2-P-115
Tucker-Drob. Elliot M 2-M-82. 2-P-112
Tuncgenc. Bahar 2-L-79
Turesky. Ted 2-H-45
Turetsky, Bruce I 2-J-54
Turoman, Nora 1-M-85, 2-M-86
Uddin, Lucina O 1-P-137, 2-L-76, 2-P-135
Ulbrich, Rachel L 1-N-93
Umbach. Rebecca 1-G-32, 2-D-17, 2-G-29
Uv. Jessica P 1-0-108
Vaidva. Chandan J 1-L-76
Vaidva, Jatin G 1-D-14
Valdebenito-Oyarzo, 2-D-21 Gabriela
Valencia, Daphne 1-C-10, 2-D-20
Vallorani, Alicia 1-J-52, 2-M-83
van Atteveldt, Nienke 2-S-146
van Buuren. Mariët 2-0-103
van de Groep, Suzanne 1-B-4
van den Bulk. Bianca 1-0-145
van der Aar. Laura 2-E-22
van der Aar, Laura 2-E-22 van Duijvenvoorde, 2-O-97 Anna C
van der Aar, Laura 2-E-22 van Duijvenvoorde, 2-O-97 Anna C van Hoorn, Jorien 1-J-54
van der Aar, Laura 2-E-22 van Duijvenvoorde, 2-O-97 Anna C van Hoorn, Jorien 1-J-54 van IJzendoorn, 1-Q-145, 2-O-97 Marinus H
van der Aar, Laura 2-E-22 van Duijvenvoorde, 2-O-97 Anna C van Hoorn, Jorien 1-J-54 van IJzendoorn, 1-Q-145, 2-O-97 Marinus H van Noordt, Stefon 2-D-19
van der Aar, Laura2-E-22van Duijvenvoorde, Anna C2-O-97van Hoorn, Jorien1-J-54van IJzendoorn, Marinus H1-Q-145, 2-O-97van Noordt, Stefon2-D-19van Steenbergen, Anna H1-H-37

Author	Poster No.
VanMeter, John W	1-P-122, 2-H-42
VanTieghem, Michelle	2-D-17, 2-F-24, 2-G-29
Vanyukov, Polina	2-L-64
Vassena, Eliana	2-S-145
Vatakis, Argiro	2-S-145
Vaughn, Jennifer	2-H-45
Velasquez, Gerardo H	2-0-102
Venkataraman, Archana	1-P-133
Venticinque, Joseph S	2-0-100, 2-0-96
Victor, Suresh	2-N-92
Vidal, Julie	2-A-2
Vidal, Rene	2-L-79
Vidal Bustamante, Constanza M	2-Q-143
Vijayakumar, Nandi	1-0-110
Vilgis, Veronika	2-P-131
Vogel, Sarah C	2-G-30
Voorhies, Willa	1-P-137, 2-L-76, 2-P-135
Wadhwa, Pathik D	2-P-124, 2-P-126
Wager, Tor D	1-0-106
Waizman, Yael	1-0-102, 2-D-15
Wakschlag, Lauren S	2-L-73
Walker, Johanna C	1-H-43, 1-P-138
Walsh, Catherine	1-L-80
Wang, Jin	2-N-88
Wang, Wei-Chun	1-K-59
Warnell, Katherine R	1-B-7

Author	Poster No.
Watts, Richard	1-0-106
Weigard, Alexander S	2-K-57
Weigelt, Sarah	1-P-142
Weinberg, Anna	1-I-50, 1-M-84, 2-D-16
Weinberg, Benjamin	1-H-40
Weiss, Hannah L	2-1-46
Weissman, David G	2-H-39
Weiß, Magdalene	1-F-26
Werker, Janet F	2-S-150
West, Martin R	1-N-92
Westbrook, Juliette	1-C-11
Wheelock, Muriah	1-I-49, 2-0-109, 2-P-143
White, Lauren	1-L-71
Wig, Gagan S	2-P-129
Wilbrecht, Linda	2-C-11, 2-J-53
Wilson, Donald	1-A-3
Williams, Mark	2-B-5
Williams, Steven C	1-0-111
Willoughby, Teena	1-Q-144, 2-D-19
Winkel, Kirsten	1-0-96
Witton, Caroline	1-P-129
Wolf, Daniel H	1-I-48, 1-L-71, 2-J-54
Wolff, Isabella	1-0-111
Wood, Emily	2-P-138
Woodburn, Mackenzie A	1-I-51, 2-H-33
Woodward, Amanda	1-G-28
Wright, Robert O	2-P-122

Author	Poster No.
Wymbs, Nicholas	1-P-115, 1-P-133
Xia, Cedric H	1-I-48
Xiao, Yaqiong	2-P-118
Xie, Wanze	2-H-45
Xu, Melody	1-K-58
Xue, Feng	2-D-14
Yan, Tingting	1-0-95
Yetter, Marissa	1-0-98
Yoon, HyeonJin	1-P-120
You, Xiaozhen	1-L-76
Youatt, Elizabeth A	1-J-52, 1-J-52
Yu, Qiongru	1-M-89
Yushmanov, Victor E	2-J-51, 2-J-52
Zacharek, Sadie	1-L-73
Zamorano, Francisco	2-D-21
Zanolie, Kiki	1-B-4, 1-B-5
Zbozinek, Tomislav	1-P-140
Zeighami, Yashar	1-K-59
Zeithamova, Dagmar	2-0-104
Zelazo, Philip	1-D-18
Zhang, Jicong	2-P-113
Zhao, Yi	1-P-139, 2-L-65, 2-L-68, 2-L-74, 2-O-111, 2-P-132
Zheng, Annie	2-P-129
Zilbovicius, Monica	2-L-61
Zion-Golumbic, Elana	2-S-145
Zollei, Lilla	2-H-45

Poster Session 1 Friday, August 30, 2019

Sponsored by Elsevier

1-A-1 Neural basis of functional fixedness during creative idea generation: An EEG study

Mathieu Cassotti¹, Anaëlle Camarda², Emilie Salvia¹, Grégoire Borst¹

¹University of Paris, ²Mines ParisTech

1-A-2 Neonatal brain structural connectivity underlies links between social adversity and executive fFunction in very preterm children

Rachel Lean¹, Tara Smyser¹, Jeanette Kenley¹, Joshua Shimony¹, Christopher Smyser¹, Cynthia Rogers¹ ¹Washington University School of Medicine

1-A-3 Infant adversity blunts cortical processing of the mother: Translating across species during typical and maltreatment rearing

Maya Opendak^{1,2}, Emma Theisen², Anna Blomkvist^{1,2}, Kaitlin Hollis¹, Teresa Lind⁴, Emma Sarro^{1,2,5}, Johan Lundstrom⁶, Nim Tottenham⁷, Mary Dozier⁸, Regina M. Sullivan^{1,2,9†} and Donald Wilson^{1,2,9†*}

¹NYU Langone Health, ²Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, ²Stockholm University, ⁴University of California, San Diego, ⁵Dominican College, ⁶Karolinska Institute, ⁷Columbia University, ⁸University of Delaware, ⁹New York University

[†]*These authors contributed equally as senior authors to this work.*

1-B-5 status differentially affects rejection response in adolescents: An event related potential study

Kiki Zanolie¹

¹Leiden University

1-B-6 Motivation to engage with negative stimuli varies across development: Evidence from a valenced choice task

Katherine Grisanzio¹, Stephanie Sasse¹, Erik Nook¹, Hilary Lambert¹, Katie McLaughlin¹, Leah Somerville¹

¹Harvard University

1-B-7 Sex differences in behavioral and neural response to social interaction in middle childhood and early adolescence

Kathryn McNaughton¹, Dustin Moraczewski¹, Laura Kirby², Katherine Warnell³, Aiste Cechaviciute¹, Junaid Merchant¹, Elizabeth Redcay¹

¹University of Maryland, ²Yale University, ³Texas State University

1-B-8 The role of self control in depressive symptomology across the transition to adolescence

Kelly Barry¹, Natasha Chaku¹, Lindsay Till Hoyt¹

¹Fordham University

1-C-9 Cognitive correlates of non-linguistic audio-visual associative learning in preschoolers

Irene Altarelli¹, Ghislaine Dehaene-Lambertz², Daphne Bavelier³

¹Paris Descartes University, ²NeuroSpin Center, CEA, University of Geneva

1-C-10 Causal information-seeking strategies change through adolescence

Kate Nussenbaum¹, Alexandra Cohen¹, Zachary Davis¹, David Halpern¹, Morgan Glover¹, Daphne Valencia¹, Xinxu Shen¹, Todd Gureckis¹, Catherine Hartley¹ ¹New York University

1-C-11 Contingency learning and value-guided decisionmaking in adolescents

Maximilian Scheuplein¹, Juliette Westbrook¹, Morwenna Rickard¹, Linette Chan¹, MaryAnn Noonan¹ ¹University of Oxford

1-C-12 Associations between play, brain development, and creativity in early childhood

Julia Leonard², Leah Sorcher², Jasmine Forde², Samantha Ferleger², Ursula Tooley², Anne Park², Yuval Hart¹, Allyson Mackey¹

¹University of Pennslyvania, ²University of Pennsylvania

1-D-13 Resistance to peer influence: Associations between self-report, experimental manipulation, and neural activation in adolescents

Kaitlyn Breiner¹, Adriana Galvan²

¹CSUDH, ²University of California, Los Angeles

1-D-14 Comprehensive characterization of individuals with a family history of alcohol use disorder

Tien Tong¹, Jatin Vaidya¹, John Kramer¹, Samuel Kuperman¹, Douglas Langbehn¹, Daniel O'Leary¹

¹University of Iowa

1-D-15 Exergaming and executive functioning in young adulthood: Positive associations between cognition and physical activity

Natasha Chaku¹, Lindsay Hoyt¹

¹Fordham University

1-D-16 Peer presence increases adolescents' prosocial behavior by speeding the evaluation of rewards for others

Rosa Li¹, Nicolette Sullivan¹, Scott Huettel¹

¹Duke University

1-D-17 Like my status?: Validation of a novel social decision-making task

Emily Barnes¹, Benjamin Silver¹, Elysha Clark-Whitney¹, Eliana Ajodan², Matthew Scult¹, Rebecca Jones¹

¹Weill Cornell Medicine, ²Teachers College, Columbia University

1-D-18 How emotion regulation affects decision making as assessed by the CUPS task in adolescents

Luke Lammers¹, Brandon Almy¹, Philip Zelazo¹, Jed Elison¹, Monica Luciana¹

¹University of Minnesota

1-D-19 Examining how context and affect influence motivated cognitive control across development

Daniel Petrie¹, Cassidy Fry¹, Nicole Roberts¹, Lisa Gatzke-Kopp¹, Charles Geier¹

¹The Pennsylvania State University

1-D-21 Brain and behavioral asymmetries for gain and loss learning emerge with age during adolescence

Catherine Insel¹, Mahalia Prater Fahey¹, Leah Somerville¹ ¹Harvard University

1-D-22 What cognitive processes change during the IGT across adolescence?

Brandon Almy¹, Brian Hart¹, Paul Collins¹, Michael Kuskowski¹, Monica Luciana¹

¹University of Minnesota

1-E-24 Brain dynamics and temporal trajectories of decoding expressive and neutral faces in children

Sandra Naumann¹, Mareike Bayer¹, Isabel Dziobek¹

¹Berlin School of Mind and Brain, Humboldt-Universität zu Berlin

1-F-26 Magnetoencephalographic signatures of hierarchical rule learning in newborns

Julia Moser¹, Franziska Schleger¹, Magdalene Weiß¹, Katrin Sippel¹, Hubert Preißl¹

¹University of Tübingen

1-F-27 The role of semantic elaboration and perceptual binding for episodic encoding: ERP and oscillatory subsequent memory effects in children, adolescents and young adults

Daniela Czernochowski¹, Ann-Kathrin Beck¹, Andre Haese¹ ¹TU Kaiserslautern

1-G-29 Cumulative socioeconomic risk and child maltreatment as predictors of individual differences in neural systems underlying inhibitory control in adulthood

Meriah DeJoseph², Lauren Demers¹, Ruskin Hunt¹, Dante Cicchetti¹, Fred Rogocsh³, Sheree Toth³, Kathleen Thomas¹

¹University of Minnesota, ²New York University, ³University of Rochester

1-G-30 Executive functioning is impacted by chronic stress hormones in early childhood

Ella-Marie Pyle¹, Megan Wing Shan Chung², Olga Kepinska¹, Stephanie Haft², Isabel Sunshine¹, Chloe Jones³, Roeland Hancock³, Fumiko Hoeft³

¹University of California San Francisco, ²University of California Berkeley, ³University of Connecticut

1-G-31 Developmental trajectories of executive functions in seven countries

Grace Icenogle¹, Cortney Simmons¹, Laurence Steinberg² ¹University of California, Irvine, ²Temple University

1-G-32 Early caregiving instability and incremental learning strategies

Paul Bloom¹, Andrea Fields¹, Tricia Choy¹, Nicolas Camacho¹, Lisa Gibson¹, Rebecca Umbach¹, Charlotte Heleniak¹, Sage Hess², Daphna Shohamy¹, Nim Tottenham¹

¹Columbia University, ²Columbia University Teachers College

1-G-33 Peer victimization and dysfunctional reward processing: ERP and behavioral responses to social and monetary rewards

Brent Rappaport¹, Laura Hennefield¹, Autumn Kujawa², Kodi Arfer³, Danielle Kelly¹, Emily Kappenman⁴, Joan Luby¹, Deanna Barch¹

¹Washington University in St. Louis, ²Vanderbilt University, ³University of California, Los Angeles, ⁴San Diego State University

1-H-34 Developmental brain correlates of psychosis vulnerability and early onset cannabis use

Josiane Bourque¹, Sean Spinney, Flavie Laroque¹, Rachel Sharkey², Marco Leyton², Alain Dagher², Stephane Potvin¹, Patricia Conrod¹

¹University of Montreal, ²McGill University

1-H-35 Neural mechanisms associated with neonatal reflexes

Zeena Ammar¹, Aiden Ford², Longchuan Li², Warren Jones², Sarah Shultz²

¹Emory University, ²Emory University School of Medicine and Marcus Autism Center

1-H-36 The link between morphological profiles and cognitive performance in childhood

Roma Siugzdaite¹, CALM team², Duncan Astle¹ ¹Cambridge University, ²Cambridge University

1-H-37 The relationship between social experiences and adolescent brain development

Eduard Klapwijk¹, Anna van Steenbergen¹, Eveline Crone¹ ¹Leiden University

1-H-38 How interindividual differences in IPS sulcal morphology shape symbolic number fluency in children

Margot Roell¹, Arnaud Cachia¹, Gregoire Borst¹, Anna Matejko, Daniel Ansari¹

¹LaPsyDE (UMR CNRS 8240)

1-H-39 Cortical thickness differences in children with dyscalculia when compared to those with dyslexia and those with combined dyslexia and dyscalculia

Cameron McKay¹, Melanie Lozano¹, Eileen Napoliello¹, D Flowers¹, Guinevere Eden¹

¹Georgetown University

1-H-40 Relations between hippocampal volume and sleep in early childhood

Tamara Allard¹, Sanna Lokhandwala², Morgan Botdorf¹, Arcadia Ewell¹, Benjamin Weinberg¹, Rebecca Spencer², Tracy Riggins¹

 $^1\!\text{University}$ of Maryland, $^2\!\text{University}$ of Massachusetts - Amherst

1-H-41 Influence of of neighbourhood on brain and mental health: A large scal MRI study of 4523 children

Neha Bhutani¹, Budhachandra Khundrakpam¹, Suparna Choudhury¹, Ian Gold¹, Alan Evans¹ ¹McGill University

1-H-42 Fine-particle air pollution and severity of early life stress interact to predict adolescent structural brain development

Jonas Miller¹, Emily Dennis², Ian Gotlib¹ ¹Stanford University, ²Harvard Medical School

1-H-43 Experiences of abuse and not neglect are associated with decreased amydgala gray matter volumes in depressed adolescents

Amar Ojha¹, Johanna Walker¹, Ian Gotlib¹, Tiffany Ho¹ ¹Stanford University

1-H-44 Early environmental factors associated with brain morphology in school-aged youth

Seok-Jun Hong¹, Camila Caballero², Anthony Mekhanik¹, Amy Roy³, Michael Milham¹, Dylan Gee¹

¹Child Mind Institute, ²Yale University, ³Fordham University

1-H-45 Healthy early-life family functioning is associated with white matter microstructural development in late childhood in a population-based neuroimaging birth cohort

Scott Delaney¹, Kerry Ressler², Sebastien Haneuse¹, Henning Tiemeier¹, Laura Kubzansky¹

¹Harvard T.H. Chan School of Public Health, ²McLean Hospital and Harvard Medical School

1-H-46 Sex effects on the relationship between economic stress and neurocognitive function on subcortical gray matter volume in the Adolescent Brain Cognitive Development Study

Janna Colaizzi¹, Florence Breslin¹, Namik Kirlic¹, Martin Paulus¹

¹Laureate Institute for Brain Research

1-H-47 Neighborhood-level adversity as a unique predictor of hippocampal volume and neuro-psychological function in children

Rita Taylor¹, Deanna Barch¹

¹Washington University in St. Louis

1-I-49 Pre-school performance monitoring is associated with development of OCD and brain networks implicated in executive control and emotion regulation

Muriah Wheelock¹, Kirsten Gilbert¹, Adam Eggebrecht¹, Joan Luby¹, Deanna Barch¹

¹Washington University in St. Louis

1-I-50 Social and life-threatening stressors in early adolescence predict increased neural response to errors in emerging adulthood

Iulia Banica¹, Aislinn Sandre¹, Grant Shields², George Slavich³, Anna Weinberg¹

¹McGill University, ²University of California, Davis, ³University of California, Los Angeles

1-I-51 Trajectories of group and individual-level structural brain network organization from birth to childhood and their cognitive relevance

Mackenzie Woodburn¹, Margaret Sheridan¹, Cheyenne Bricken¹, Weili Lin¹, Jessica Cohen¹ ¹University of North Carolina at Chapel Hill

1-J-52 Baseline respiratory sinus arrhythmia as a moderator in the development of effortful control in children of parents high in authoritarian traits

Elizabeth Youatt¹, Alicia Vallorani¹, Yue Ma¹, Koraly Perez-Edgar¹

¹The Pennsylvania State University

1-J-53 Neurophysiological markers of anxiety in early childhood: An intervention target?

Ka I Ip¹, Yanni Liu¹, Maria Muzik¹, Kate Rosenblum¹, Kate Fitzgerald¹

¹University of Michigan - Ann Arbor

1-J-54 Biological markers of prosocial decision-making: A test of brain activation and the dual-hormone hypothesis

Natasha Duell¹, Jorien van Hoorn², Ethan McCormick¹, Eva Telzer¹

¹University of North Carolina at Chapel Hill, ²Leiden University

1-J-55 Early-life scarcity-adversity negatively impacts social development via a hypocortisolism-dependent mechanism

Rosemarie Perry¹, Stephen Braren¹, Annie Brandes-Aitken¹, Cristina Alberini¹, Regina Sullivan¹, Clancy Blair¹ ¹New York University

1-K-56 Can this data be saved? Techniques for high motion in resting state scans of first grade children

Jolinda Smith², Ben Clarke¹, Lina Shanley¹, Virany Men¹, Fred Sabb¹

¹University of Oregon, ²MR Physicist

1-K-57 The functional random forest: an approach to overcome the heterogeneity problem in developmental studies

Eric Feczko¹, Oscar Miranda-Dominguez¹, Mollie Marr¹, Alice Graham¹, Joel Nigg¹, Damien Fair¹

¹Oregon Health Science University

1-K-58 An integrative approach to the development of motor problem solving

Ori Ossmy¹, Brianna Kaplan¹, Danyang Han¹, Melody Xu¹, Cat Bianco¹, Karen Adolph¹

¹New York University

1-K-59 Convergence of individual variability in patterns of maturational coupling of cortical thickness and white matter connectivity, and its relation to cognition

Budhachandra Khundrakpam¹, Wei-Chun Wang²,

Gregory Kiar¹, Yashar Zeighami¹, Simona Ghetti³, Laurie Cutting⁴, Alan Evans¹, Silvia Bunge²

¹Montreal Neurological Institute, ²Helen Wills Neuroscience Institute, University of California Berkeley, ³Center for Mind and Brain, University of California, ⁴Vanderbilt University

1-K-60 Evaluating accuracy of basal ganglia segmentation pipelines for pediatric samples

Da-Yea Song¹, Deana Crocetti¹, E. Mark Mahone¹, Stewart Mostofsky¹, Karen Seymour² ¹Kennedy Krieger Institute, ²Johns Hopkins University School of Medicine

1-K-61 Is it ADHD or just motion? How motion and outliers can bias brain tissue microstructure metrics derived from diffusion tensor imaging

Josh Robinson¹, Stewart Mostofsky², Deana Crocetti¹

 $^1\!\text{Kennedy}$ Krieger Institute, $^2\text{Johns}$ Hopkins University School of Medicine

1-K-62 Utilizing GIMME to examine network integration in adolescents with and without obesity

Nicole Roberts², Shana Adise², Charles Geier¹

¹The Pennsylvania State University, ²The University of Vermont

1-L-63 Intact habituation in the preterm infant

Lorna Ginnell¹, James Boardman¹, Rebecca Reynolds¹, Emma Telford¹, Sue Fletcher-Watson¹

¹University of Edinburgh

1-L-64 Longitudinal relations between stress reactivity and anxiety symptoms from 5 to 12 years

Anita Harrewijn¹, Dominique Philips¹, Heather Henderson¹, Daniel Pine¹, Nathan Fox¹, Katharina Kircanski¹

¹National Institute of Mental Health

1-L-65 Developmental trajectories of white matter integrity in children with Williams syndrome

Leah Sorcher¹, Tiffany Nash¹, Jonathan Kippenhan¹, Shannon Grogans¹, Franchesca Kuhney¹, Madeline Hamborg¹, Michael Gregory¹, Daniel Eisenberg¹, Philip Kohn¹, Carolyn Mervis², Karen Berman¹

¹National Institutes of Health, ²University of Louisville

1-L-66 Exploring the neurophysiological basis of behavioural flexibility deficits in individuals with Fragile-X Syndrome

Lauren Schmitt¹, Ernest Pedapati¹, Craig Erickson¹, John Sweeney²

¹Cincinnati Children's Hospital Medical Center, ²University of Cincinnati

1-L-67 Behavioral inflexibility and inattention in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorders: more similarities than differences

Dienke Bos¹, Bob Oranje¹, Sarah Durston¹ ¹UMC Utrecht Brain Center

1-L-68 Age-related differences in social evaluation learning and depressive symptoms during adolescence

Jessica Bone¹, Gemma Lewis¹, Sarah-Jayne Blakemore¹, Jonathan Roiser¹, Glyn Lewis¹

¹University College London

1-L-69 Using a neuroscience approach to explore social deficits in autism: Neural synchronization in autistic children and their parents is linked with social impairments

Laura Quinones-Camacho¹, Frank Fishburn¹, Susan Perlman¹ ¹University of Pittsburgh

1-L-70 The role of sleep in emotional adaptation in anxious and healthy youth

Nathan Sollenberger¹, Aaron Mattfeld¹, Adam Kimbler¹, Dana McMakin¹

¹Florida International University

1-L-71 Development of internal performance monitoring circuitry in adolescents with and without subclinical psychosis symptoms

Tess Levinson¹, Greer Prettyman¹, Theodore Satterthwaite¹, Lauren White¹, Tyler Moore¹, Monica Calkins¹, Kosha Ruparel¹, Raquel Gur¹, Ruben Gur¹, Daniel Wolf¹

¹Perelman School of Medicine at the University of Pennsylvania

1-L-72 Subtle motor signs as a biomarker for effective mindful movement intervention in children with ADHD

Stewart Mostofsky¹, Dav Clark¹, Karen Seymour¹, Robert Findling¹

¹Kennedy Krieger Institute

1-L-73 Associations between childhood trauma, anxiety, and safety cue learning during development

Sahana Kribakaran¹, Paola Odriozola¹, Emily Cohodes¹, Camila Caballero¹, Sarah McCauley¹, Sadie Zacharek¹, Hopewell Rogers¹, Emma Goodman¹, Cristian Hernandez¹, Jason Haberman¹, Hannah Spencer², Jeffrey Mandell¹, Dylan Gee¹

¹Yale University, ²University of Amsterdam

1-L-74 Specific contributions of gray matter alteration to neurodevelopment in antenatally growth restricted very preterm infants

Chiara Sacchi¹, Dafnis Batalle², Jonathan O'Muircheartaigh², Michela Cesano¹, Serena Counsell², David Edwards², Chiara Nosarti²

¹University of Padova, ²King's College London

1-L-7 5 Examining the relation between early white matter abnormalities and temperament in very preterm infants

Meera Patel¹, Leanne Tamm¹, Nehal Parikh¹

¹Cincinnati Children's Hospital Medical Center

1-L-76 Alteration in gray matter volume and thickness in adolescents with severe obesity

Laya Rajan¹, Gabriel Santos Malavé¹, Alaina Pearce², Joseph Cherry¹, Xiaozhen You¹, Alexandra Olson³, Eleanor Mackey³, Evan Nadler³, Chandan Vaidya¹

 $^1\mbox{Georgetown}$ University, $^2\mbox{Pennsylvania}$ State University, $^3\mbox{Children's}$ National Health System

1-L-77 Transdiagnostic links across ADHD and mental health symptoms: a network approach

Silvana Mareva², CALM team², Joni Holmes² ²University of Cambridge

1-L-78 Establishing a neural basis for the high frequency of comorbidity amongst RD, ADHD, and DCD

Patricia Hoyos¹, Na Yeon Kim¹, Kajsa Igelstrom², Maggie Pecsok³, Mark Pinsk¹, Sabine Kastner¹ ¹Princeton University, ²Linköping University, ³Yale University

1-L-79 Pathways to autism in intellectual disability

Elise Ng-Cordell¹, Diandra Brkic², Sinead O'Brien¹, Duncan Astle¹, Gaia Scerif³, Kate Baker¹ ¹University of Cambridge, ²Miss, ³University of Oxford

1-L-80 Social processing in Autism Spectrum Disorders using machine learning approach for visual stimulus segmentation

Gabrielle Reimann¹, Michal Ramot¹, Catherine Walsh¹, Patrick McClure¹, Francisco Pereira¹, Alex Martin¹

¹National Institute of Mental Health

1-M-81 Neural basis of biased competition in development: Sensory suppression in visual cortex of school-aged children

Na Yeon Kim¹, Sabine Kastner¹

¹Princeton University

1-M-82 Development of rhythmic sampling during visual attention

Myrthe Ottenhoff¹, Ivette Planell-Mendez¹, Sabine Kastner¹ ¹Princeton University

1-M-83 ADHD symptom burden relates to distinct neural activity across executive function domains

Tehila Nugiel¹, Mary Abbe Roe¹, Laura Engelhardt¹, Jessica Church¹

¹The University of Texas at Austin

1-M-84 Neural correlates of attention to ambiguous and non-ambiguous adult and peer emotional expressions in adolescence

Aislinn Sandre¹, Anna Weinberg¹, Melanie Dirks¹ ¹McGill University

1-M-85 Educational outcomes depend both on visual and multisensory control of selective attention

Nora Turoman¹, Ruxandra Tivadar¹, Chrysa Retsa¹, Micah Murray¹, Gaia Scerif², Pawel Matusz³

¹Lausanne University Hospital Centre (CHUV) and University of Lausanne (UniL), ²University of Oxford, ³Institute of Information Systems, University of Applied Sciences Western Switzerland (HES-SO)

1-M-86 Top-down saliency maps link physical navigation and memory-guided attention in early childhood

Andrew Lynn¹, Lakshmi Govindarajan¹, Kim Seungchan¹, Kalpit Thakkar¹, Thomas Serre¹, Dima Amso¹

¹Brown University

1-M-87 Caregiver and infant cortisol mediate the effects of socioeconomic risk on infant attention: Implications for the social transmission of risk

Stephen Braren¹, Annie Brandes-Aitken¹, Rosemarie Perry¹, Clancy Blair¹

¹New York University

1-M-89 Altered attentional processing in pediatric anxiety

Michael Perino¹, Qiongru Yu¹, Chad Sylvester¹ ¹Washington University School of Medicine

1-N-90 Cerebellar language lateralization in bilingual and monolingual children and adolescents

Hannah Grotzinger¹, Rachel Romeo¹, Melissa Giebler¹, Andrea Imhof², Anila D'Mello¹, John Gabrieli¹

¹Massachusetts Institute of Technology, ²University of Oregon

1-N-91 Charting the impact of bilingualism on social and communicative development in children with and without autism

Rachael Davis¹, Hugh Rabagliati¹, Antonella Sorace¹, Sue Fletcher-Watson¹

¹University of Edinburgh

1-N-93 Mapping neural correlates of language processing in early childhood development using High-Density Diffuse Optical Tomography (HD-DOT)

Mariel Schroeder¹, Alexandra Svoboda¹, Kalyan Tripathy¹, Rachel Ulbrich¹, Andrew Fishell¹, Joseph Culver¹, Adam Eggebrecht¹

¹Washington University in St. Louis, School of Medicine

1-O-94 Individual alpha frequency and child cognitive development

Kate Riggall¹, Mark Kohler², Sally Brinkman³, Phil Kavenagh⁴, Ina Bornkessel-Schlesewsky¹

¹UniSA, ²University of Adelaide, ³Telethon Kids Institute, ⁴Institute for Social Neuroscience

1-0-95 Sensory perception and processing in early childhood

Svenja Espenhahn¹, Tingting Yan¹, Kate Godfrey¹, Winnica Beltrano¹, Olesya Dmitrieva¹, Niloy Nath², Carly McMorris¹, Deborah Dewey¹, Andrea Protzner¹, Mark Tommerdahl³, Ashley Harris¹, Signe Bray¹

 1 University of Calgary, 2 McMaster University, 3 University of North Carolina at Chapel Hill

1-O-97 Effects of binge drinking and depression on cognitive-control processes during an emotional go/no-go task in college-aged adults

Kelsey Magee¹, Arin Connell¹

¹Case Western Reserve University

1-0-98 The impact of peers on adolescent brain response following errors is associated with the quality of recent peer interactions

Ashley Smith¹, Quyen Do², Marissa Yetter¹, Anni Subar¹, Katharina Kircanski¹, Anita Harrewijn¹, Elise Cardinale¹, Ellen Leibenluft¹, Melissa Brotman¹, Daniel Pine¹

¹National Institute of Mental Health, ²University of Pittsburgh

1-O-100 Synchronization between brain regions in parents and their adolescent children during a conflict discussion task

Erin Ratliff¹, Masaya Misaki², Kara Kerr¹, Kelly Cosgrove², Andrew Moore², Maggie Johnson², Danielle Deville², Jennifer Silk³, Jerzy Bodurka², Kyle Simmons⁴, Amanda Morris¹

¹Oklahoma State University, ²Laureate Institute for Brain Research, ³The University of Pittsburgh, ⁴Janssen Research & Development

1-O-101 Neural differentiation of learned threat associations is influenced by early childhood temperament

Dana Glenn¹, Megan Peters¹, Nathan Fox, Daniel Pine, Kalina Michalska¹

¹University of California, Riverside

1-0-102 Pre-registration: neural bases of intergenerational transmission of emotional regulatory traits

Adriana Méndez Leal², João Guassi Moreira¹, Emilia Ninova¹, Yael Waizman¹, Jennifer Silvers¹

¹University of California, Los Angeles

1-0-103 How much sleep is enough sleep? Effects of self-reported sleep hours on the brain functions of school age children

Sonali Poudel¹, Julie Schneider², Yvonne Ralph¹, Mandy Maguire¹

¹University of Texas at Dallas, ²University of Delaware

1-0-104 Differential mechanisms supporting social vs. monetary reward processing in adolescent anxiety and depression

Tessa Clarkson¹, Megan Quarmley¹, Brady Nelson², Johanna Jarcho¹

¹Temple University, ²Stony Brook University

1-0-105 Examining the neurocircuitry of habits in adolescents and young adults

Charles Geier¹, Daniel Petrie¹, Nicole Roberts¹ ¹Pennsylvania State University

1-0-106 Behavioral and neural signatures of working memory in childhood

Monica Rosenberg¹, Steven Martinez², Kristina Rapuano², May Conley², Alexandra Cohen³, M. Daniela Cornejo⁴, Donald Hagler⁴, Tor Wager⁵, Eric Feczko⁶, Eric Earl⁶, Damien Fair⁶, Deanna Barch⁷, Richard Watts², BJ Casey²

¹The University of Chicago, ²Yale University, ³New York University, ⁴University of California, San Diego, ⁵Dartmouth College, ⁶Oregon Health & Science University, ⁷Washington University in St. Louis

1-0-107 Poverty and maltreatment: Distinct pathways to emotion regulation deficits

Nourhan Elsayed¹, Brent Rappaport¹, Joan Luby¹, Deanna Barch¹

¹Washington University in St. Louis

1-0-108 Adolescents exhibit dampened prefrontal activation to stress compared to children and adults

Jessica Uy¹, Macrina Cooper-White¹, Carrianne Leschak¹, Naomi Eisenberger¹, Andrew Fuligni¹, Adriana Galvan¹ ¹University of California, Los Angeles

1-0-109 Normative development of vibrotactile metrics in healthy boys and girls

Jason He¹, Mark Tommerdahl², Richard Edden¹, Stewart Mostofsky³, Nicolaas Puts¹

¹The Johns Hopkins University School of Medicine, ²University of North Carolina at Chapel Hill, ³Kennedy Krieger Institute

1-0-110 Neural correlates of self-evaluation during puberty

Marjolein Barendse¹, Nandi Vijayakumar¹, John Flournoy¹, Danielle Cosme¹, Theresa Cheng¹, Samantha Chavez¹, Jessica Flannery¹, Michelle Byrne¹, Nicholas Allen¹, Jennifer Pfeifer¹

¹University of Oregon

1-O-111 Development of cognitive control and frontostriatal circuitry in children with Autism Spectrum Disorder or Obsessive-Compulsive Disorder: A longitudinal fMRI study

Bram Gooskens¹, Dienke Bos¹, Vincent Mensen, Devon Shook, Muriel Bruchhage, Jill Naaijen, Isabella Wolff, Daniel Brandeis, Steven Williams, Jan Buitelaar, Bob Oranje¹, Sarah Durston¹ ¹UMC Utrecht

1-O-112 Brain responses to socially vs. non socially relevant aversive auditory stimuli in youth with and without autism

Genevieve Patterson¹, Kaitlin Cummings¹, Jiwon Jung¹, Lamia Abbas¹, Susan Bookheimer¹, Mirella Dapretto¹, Shulamite Green¹

¹University of California Los Angeles

1-P-113 Localizing differences in between network functional connectivity in attention deficit/hyper-activity disorder

Teague Henry¹, Kelly Duffy¹, Mary Beth Nebel², Stewart Mostofsky², Jessica Cohen¹

¹University of North Carolina at Chapel Hill, ²Kennedy Krieger Institute

1-P-114 Dynamic changes of functional connectivity are associated with age and cognitive ability

Dietsje Jolles¹, Eva Mennigen², Catherine Hegarty², Mohan Gupta², Carrie Bearden², Katherine Karlsgodt² ¹Leiden University, ²University of California, Los Angeles

1-P-115 Associations of premotor connectivity with handwriting impairment in children with autism

Amira Herstic¹, Nicholas Wymbs¹, Rebecca Rochowiak¹, Carolyn Koch¹, Mary Beth Nebel¹, Stewart Mostofsky¹ ¹Kennedy Krieger Institute

1-P-116 Maternal cannabis use during pregnancy affects fetal hippocampal functional connectivity

Carly Lenniger¹, J Hect², T Lewis², B Coyle², C Espinoza-Heredia¹, T Qawasmeh², C Trentacosta², M Thomason⁴ ¹NYU Langone Medical Center, ² Wayne State University, ⁴New York University Langone

1-P-118 Cognitive control networks are functionally and structurally connected during narrative comprehension from infancy to 9 years

Rola Farah¹, Tzipi Horowitz-Kraus¹

¹Technion-Israel Institute of Technology

1-P-120 Functional connectivity and early number skills in first grade students

Lina Shanley¹, Ben Clarke¹, Brian Gearin¹, HyeonJin Yoon¹, Jolinda Smith¹, Virany Men¹, Fred Sabb¹

¹University of Oregon

1-P-121 Social risk perception and functional brain connectivity between reward and mentalizing brain regions during adolescence

Jack Andrews¹, John Flournoy², Garrett Ross³, Shannon Peake³, Jessica Flannery³, Theresa Cheng³, Phil Fisher³, Jennifer Pfeifer³, Kathryn Mills³

¹University College London, ²Harvard University, ³University of Oregon

1-P-122 Behavioral inhibition is linked to functional connectivity during reward anticipation and greater risk-taking in adolescents.

Marissa Laws¹, Shady El Damaty¹, Maria Stoianova¹, Emma Rose², Diana Fishbein², John VanMeter¹

¹Georgetown University, ²The Pennsylvania State University

1-P-123 An anterior-to-posterior functional connectivity shift in the developing fronto-parietal number network

Priya Kalra¹, Edward Hubbard¹

¹University of Wisconsin--Madison

1-P-124 Childhood violence exposure and resting-state connectivity: Person-specific networks capture heterogeneity and some consistency.

Leigh Goetschius¹, Tyler Hein¹, Sara McLanahan², Jeanne Brooks-Gunn³, Vonnie McLoyd¹, Hailey Dotterer¹, Nestor Lopez-Duran¹, Colter Mitchell¹, Luke Hyde¹, Christopher Monk¹, Adriene Beltz¹

¹University of Michigan, ²Princeton University, ³Columbia University

1-P-125 Adolescent stress and the development of neural circuits underlying social behaviors

Danielle Gerhard¹, Francis Lee¹

¹Weill Cornell Medicine

1-P-126 Neurobiological embedding of recent or concurrent child maltreatment in connectivity patterns

Emma Rose¹, Giorgia Picci¹, Rachel Bernier¹, Hannah Schreier¹, Idan Shalev¹, Chad Shenk¹, Christine Heim², Jennie Noll¹

¹The Pennsylvania State University, ²Charité University

1-P-127 Variation in fetal limbic system functional connectivity relates to prenatal household SES

Claudia Espinoza-Heredia¹, Jasmine Hect², Toni Lewis², Tamara Qawasameh², Carly Lenniger¹, Brendan Coyle², Christopher Trentacosta², Moriah Thomason¹

¹New York University Medical Center, ²Wayne State University

1-P-128 Advantages of multi-shell diffusion models for studies of brain development in youth

Adam Pines¹, Matthew Cieslak, Graham Baum¹, Philip Cook¹, Azeez Adebimpe¹, Diego Dávila¹, Mark Elliott¹, Kristin Murtha¹, Desmond Oathes¹, Kayla Piiwaa¹, Adon Rosen¹, Sage Rush¹, Robert Jirsaraie¹, Russell Shinohara¹, Danielle Bassett¹, David Roalf¹, Theodore Satterthwaite¹

¹University of Pennsylvania

1-P-129 Functional networks and minimum spanning trees in developmental dyslexia

Diandra Brkić¹, Joel Talcott², Arjan Hillebrand³, Caroline Witton² ¹Miss, ²Aston University, ³VU University Medical Center

1-P-130 Subnetworks that comprise the core functional brain networks display distinct patterns of maturation

Nessa Bryce¹, John Flournoy¹, Maya Rosen¹, Kelly Sambrook¹, Katie McLaughlin¹

¹Harvard

1-P-132 A preliminary evaluation of potential epigenetic and neural biomarkers of emotion dysregulation in children

Kaley Davis¹, Amy Roy¹, Marija Kundakovic¹ ¹Fordham University

1-P-133 A Joint Network Optimization Framework to Predict Clinical Severity from Resting-State Functional Connectomics

Niharika D'Souza¹, Mary Beth Nebel², Nicholas Wymbs², Stewart Mostofsky², Archana Venkataraman¹

¹Johns Hopkins University, ²Kennedy Krieger Institute

1-P-134 Utilizing conditioned safety to augment fear extinction in adolescent mice

Heidi Meyer¹, Francis Lee¹

¹Weill Cornell Medicine

1-P-136 Neonatal default mode network connectivity relates to autism symptoms at ages 2 and 5 years

Peppar Cyr¹, Cynthia Rogers¹, Tara Smyser¹, Jeanette Kenley¹, Sydney Kaplan¹, Rebecca Brenner¹, Rachel Lean¹, Chad Sylvester¹, Christopher Smyser¹

¹Washington University in St. Louis

1-P-137 Neural systems supporting set-shifting in children with autism spectrum disorder

Celia Romero¹, Bryce Dirks¹, Willa Voorhies², Dina Dajani, Paola Odriozola³, Jason Naomi¹, Meaghan Parlade¹, Michael Alessandri¹, Jennifer Britton¹, Lucina Uddin¹

 $^1\text{University}$ of Miami, $^2\text{University}$ of California Berkeley, $^3\text{Yale}$ University

1-P-138 Functional connectivity between the amygdala and ventromedial prefrontal cortex is associated with emotional regulation dysfunction and suicidal ideation in adolescents

Johanna Walker¹, Artensia Kulla¹, Manpreet Singh¹, Ian Gotlib¹, Tiffany Ho¹ ¹Stanford University

1-P-139 Developmental changes in delay discounting and fronto-striatal functional connectivity among children with ADHD and typically developing children

Aaron Tan¹, Mary Beth Nebel¹, Stewart Mostofsky¹, Karen Seymour¹, Yi Zhao¹, Keri Rosch¹

¹Kennedy Krieger Institute

1-P-140 The relationship between psychophysiological and neural reponses to auditory and tactile aversive stimuli in youth with autism spectrum disorder

Jiwon Jung¹, Tomislav Zbozinek², Kaitlin Cummings¹, Candace Chan¹, Michelle Craske¹, Susan Bookheimer¹, Mirella Dapretto¹, Shulamite Green¹

¹University of California, Los Angeles, ²University of California, Los Angeles/California Institute of Technology

1-P-142 Multimethod evidence for a prolonged development of the visual scene network

Tobias Meissner¹, Sarah Weigelt²

¹Ruhr University Bochum, ²TU Dortmund University

1-P-123 An anterior-to-posterior functional connectivity shift in the developing fronto-parietal number network

Priya Kalra¹, Edward Hubbard¹

¹University of Wisconsin--Madison

1-Q-143 Within-person fluctuations in sleep duration and regularity predict future stress exposure and anxiety and depression symptoms in adolescents

Constanza Vidal Bustamante¹, Alexandra Rodman¹, John Flournoy¹, Kate McLaughlin¹

¹Harvard University

1-Q-144 Investigating ERP consistency across child and adolescent worriers in tasks measuring sensitivity to punishment

Taylor Heffer¹, Teena Willoughby¹ ¹Brock University

1-Q-145 Factors underlying the effects of the Videofeedback intervention to promote Positive Parenting and Sensitive Discipline on parenting behaviour: the role of neural face processing

Laura Kolijn¹, Rens Huffmeijer², Bianca van den Bulk², Saskia Euser², Marinus van IJzendoorn³, Marian Bakermans-Kranenburg¹

¹Vrije Universiteit Amsterdam, ²Leiden University, ³Erasmus University Rotterdam

1-Q-146 Exploring cortical hemodynamics in X&Y disorder using functional near infrared spectroscopy

Afrouz Anderson¹ ¹NIRx Medical Technologies

Poster Session 2 Saturday, August 31

Sponsored by Elsevier

2-A-1 Maturation of domain general neurocognitive processes

Brenden Tervo-Clemmens, Finnegan Calabro¹, Beatriz Luna¹ ¹University of Pittsburgh

2-A-2 Changes in the insula and caudate nucleus activity during SST induced by inhibitory control training. A fMRI study in school-age children

Emilie Salvia¹, Sylvain Charron², Valérie Dorriere¹, Marine Moyon¹, Cloelia Tissier¹, Lisa Delalande¹, Bernard Guillois³, Katell Mevel¹, Nicolas Poirel¹, Julie Vidal¹, Catherine Oppenheim², Olivier Houdé¹, Arnaud Cachia¹, Gregoire Borst¹

¹Paris Descartes, ²INSERM, ³CHU de Caen

2-B-3 Gonadal hormone administration alters neural response to both unfamiliar peer's and own mother's voice in adolescents

Michele Morningstar¹, Roberto French¹, Connor Grannis¹, Andy Hung¹, Meika Travis¹, Whitney Mattson¹, Leena Nahata², Scott Leibowitz², Eric Nelson¹

¹Research Institute at Nationwide Children's Hospital, ²Nationwide Children's Hospital

2-B-4 Associations between limbic white matter microstructure and social and emotional functioning in children with ADHD+ASD

Kate Stephens², Timothy Silk², Peter Enticott², Emma Sciberras²

¹Deakin University/Murdoch Children's Research Institute, ²Deakin University

2-B-5 Age-related differences in prosocial and antisocial influence in adolescence

Saz Ahmed¹, Lucy Foulkes², Jovita Leung¹, Cait Griffin¹, Ashok Sakhardande, Marc Bennett³, Darren Dunning³, Kirsty Griffiths⁴, Jenna Parker³, MYRIAD Team¹, Willem Kuyken⁵, Mark Williams⁶, Tim Dalgleish³, Sarah-Jayne Blakemore¹

¹University College London, ²University of York, ³Cambridge University, ⁴Cambridge University, ⁵Oxford University, ⁶Oxford University

2-B-6 Neural correlates of conflicting social influences on adolescent risk-taking

Seh-Joo Kwon¹, Kathy Do¹, Ethan McCormick¹, Eva Telzer¹ ¹University of North Carolina- Chapel Hill

2-B-8 Childhood maltreatment relates to a weaker effect of negative emotional distraction on inhibitory control and less recruitment of fronto-regulatory regions

Lauren Demers¹, Ruskin Hunt¹, Dante Cicchetti¹, Julia Cohen-Gilbert², Fred Rogosch³, Kathleen Thomas¹

¹University of Minnesota, ²McLean Hospital, ³University of Rochester

2-C-9 Longitudinal resting-state fMRI in individuals with autism

Benjamin Silver¹, Charles Lynch¹, Elysha Clark-Whitney¹, Emily Barnes¹, Jonathan Power¹, Rebecca Jones¹ ¹Weill Cornell Medicine

2-C-10 Is Cognitive Segmentation the core limit to problem solving abilities in children?

Sinead O'Brien¹, Daniel Mitchell¹, John Duncan¹, Daphne Chylinski², Joni Holmes¹

¹University of Cambridge, ²University of Liège

2-C-11 The relationship between pubertal onset and benefits from a task-switching training

Corinna Laube¹, Neda Khosravani¹, Linda Wilbrecht², Silvia Bunge², Ulman Lindenberger¹, Yana Fandakova¹

¹Max Planck Institute for Human Development, ²University of California, Berkeley

2-D-12 An electrophysiological investigation of reinforcement effects in attention deficit/hyperactivity disorder: Dissociating cue sensitivity from down-stream effects on target engagement and performance

Georgia Chronaki¹, Fruzsina Soltesz², Nicholas Benikos³, Edmund Sonuga-Barke⁴

¹University of Central Lancashire, ²University of Southampton, ³Macquarie University, ⁴Kings College London

2-D-13 Behavioral and neural correlates of feedback responsivity in adolescent risk taking

Amanda Baker¹, Hongjing Lu¹, Adriana Galván¹

¹University of California, Los Angeles

2-D-14 Neural correlates of risk and reward in safe and risky young men who have sex with men

Vita Droutman¹, Emily Barkley-Levenson², Feng Xue³, Antoine Bechara¹, Lynn Miller¹, Stephen Read¹

¹University of Southern California, ²Hofstra University, ³University of California, San Diego

2-D-15 Does early social deprivation alter social decision making processes?

Joao Guassi Moreira¹, Adriana Mendez Leal¹, Yael Waizman¹, Emilia Ninova¹, Jennifer Silvers¹

¹University of California, Los Angeles

2-D-16 Like mother, like daughter? Associations between mothers' and daughters' neural responses to rewards are moderated by daughters' developmental status

Paige Ethridge¹, Anna Weinberg¹

¹McGill University

2-D-17 Preregistration: Neural and behavioral mechanisms of persistence to setbacks during childhood

Michelle VanTieghem¹, Paul Bloom¹, Andrea Fields¹, Chelsea Harmon¹, Tricia Choy¹, Nicholas Camacho¹, Lisa Gibson¹, Rebecca Umbach¹, Charlotte Heleniak¹, Daphna Shohamy¹, Nim Tottenham¹

¹Columbia University

2-D-18 The upside of social media: The influence of peer 'likes' on adaptive social behavior

Emily Brudner¹, Mauricio Delgado¹

¹Rutgers University, Newark

2-D-19 An ERP investigation of children and adolescents' sensitivity to wins and losses during a perceived peer observation manipulation

Teena Willoughby¹, Taylor Heffer¹, Stefon van Noordt² ¹Brock University, ²McGill University

2-D-20 Developmental change in the influence of causal judgments on reinforcement learning

Alexandra Cohen¹, Kate Nussenbaum¹, Hayley Dorfman², Xinxu Shen¹, Daphne Valencia¹, Morgan Glover¹, Samuel Gershman², Catherine Hartley¹

¹New York University, ²Harvard University

2-D-21 Reward magnitude increases learning rate and the activity in value-related brain areas in adolescent

Maria Paz Martinez Monlina¹, Gabriela Valdebenito-Oyarzo¹, Josefina Larrain-Valenzuela¹, Ximena Stecher², Cesar Salinas², Francisco Zamorano¹, Pablo Billeke¹

¹Universidad del Desarrollo, ²Clinica Alemana de Santiago

2-E-22 Is it possible to train self-concept? Behavioral and neural evaluation of a naturalistic training program for adolescents

Laura van der Aar¹, Sabine Peters¹, Eveline Crone¹ ¹Leiden University

2-E-23 Cognitive dimensions of learning problems in children who have been identified as struggling at school

Joni Holmes¹, Rogier Kievit¹, The CALM Team¹, Susan Gathercole¹

¹University of Cambridge

2-F-25 Mapping the persistence of memory in threeto five-year-olds

Natalie Saragosa-Harris¹, Alexandra Cohen¹, Xinxu Shen¹, Catherine Hartley¹

¹New York University

2-G-26 The enduring effect of parents and peers on the neural correlates of risk taking and antisocial behavior during adolescence

Christy Rogers¹, Virnaliz Jimenez¹, Amanda Benjamin¹, Karen Rudolph², Eva Telzer¹

¹University of North Carolina at Chapel Hill, ²University of Illinois at Urbana-Champaign

2-G-27 Chronic environmental stress is related to a maturational lag in infant brain activity by 9 months of age

Sonya Troller-Renfree¹, Natalie Brito, Pooja Desai¹, Jerrold Meyer, Kimberly Noble¹

¹Teachers College, Columbia University

2-G-28 The culture of socioeconomic status and social reward and threat processing in adolescence

Nathan Jorgensen¹, Ethan McCormick¹, Kristen Lindquist¹, Mitchell Prinstein¹, Eva Telzer¹

¹University of North Carolina at Chapel Hill

2-G-29 Cognitive control and generalizability across different subtypes of caregiving adversity

Andrea Fields¹, Paul Bloom¹, Chelsea Harmon¹, Michelle VanTieghem¹, Tricia Choy¹, Nicolas Camacho¹, Lisa Gibson¹, Rebecca Umbach¹, Charlotte Heleniak¹, Nim Tottenham¹

¹Columbia University

2-G-30 Concurrent and longitudinal behavioral implications of infant negative reactivity

Sarah Vogel¹, Clancy Blair²

 $^1 \text{New}$ York University, $^2 \text{New}$ York University School of Medicine

2-G-31 Age-related improvements in predictions of environmental controllability

Careen Foord¹, Hillary Raab¹, Romain Ligneul², Katerina Frangulova³, Sophia Mascialino¹

¹New York University, ²Champalimaud Research, ³Vanderbilt University

2-G-32 Impacts of childhood maltreatment and SES on reqrd processing networks in adulthood

Shreya Lakhan-Pal¹, Ruskin Hunt¹, Dante Cicchetti¹, Meriah DeJoseph¹, Fred Rogosch², Kathleen Thomas¹ ¹University of Minnesota, ²University of Rochester

2-H-33 Longitudinal trajectories of cortical thickness from birth to 6 years predict cognitive outcomes at 9 years

Cheyenne Bricken¹, Jessica Cohen¹, Daniel Bauer¹, Mackenzie Woodburn¹, Weili Lin¹, Margaret Sheridan¹ ¹University of North Carolina at Chapel Hill

2-H-34 The role of sleep in early infant myelin development

Samuel Forbes¹, Lourdes Delgado Reyes¹, Jeevun Grewal¹, Joe Cassidy¹, Sean Deoni², John Spencer¹

¹University of East Anglia, ²Brown University

2-H-36 Mapping latent neuroanatomical substrates underlying severe temper outbursts in children

Anthony Mekhanik¹, Seok-Jun Hong¹, Michael Milham¹, Amy Roy²

¹Child Mind Institute, ²Fordham University

2-H-37 Reading ability, but not math ability, is associated with cortical thickness in an age-dependent manner

Gabrielle-Ann Torre¹, Anna Matejko¹, Guinevere Eden¹ ¹Georgetown University

2-H-38 Longitudinal development of hippocampal subregions during early-childhood

Kelsey Canada¹, Morgan Botdorf¹, Tracy Riggins¹ ¹University of Maryland

2-H-39 Reduced hippocampal volume after childhood violence increases risk for depression after later life stress

Hilary Lambert¹, David Weissman², Alexandra Rodman², Margaret Sheridan³, Katie McLaughlin²

¹University of Washington, ²Harvard University, ³University of North Carolina

2-H-40 Associations between chronic physiologic stress and white matter in children

Katrina Simon¹, Emily Merz¹, Pooja Desai¹, Jerrold Meyer², Xiaofu He³, Kimberly Noble¹

¹Teachers College, Columbia University, ²University of Massachusetts Amherst, ³Columbia University Medical Center

2-H-41 Childhood socioeconomic disadvantage, cumulative risk exposure, and surface morphometry in adulthood

Alexander Dufford¹, Pilyoung Kim¹, Gary Evans², James Swain³, Israel Liberzon⁴

¹University of Denver, ²Cornell University, ³Stony Brook University, ⁴Texas A&M University

2-H-43 Differential association of early experiences of threat and deprivation with brain structure.

Matthew Peverill¹, Maya Rosen¹, Kelly Sambrook², Margaret Sheridan³, Katie McLaughlin²

¹University of Washington, ²Harvard University, ³University of North Carolina, Chapel Hill

2-H-44 Relations between typical variations in stress and hippcampal volume in young children

Morgan Botdorf¹, Emma Chad-Friedman¹, Lea Dougherty¹, Tracy Riggins¹

¹University of Maryland, College Park

2-H-45 Relating stunting, underweight, and wasting to brain structure in 2-month-old Bangladeshi infants growing up in poverty: a feasibility and pilot study

Ed Turesky¹, Wanze Xie¹, Swapna Kumar², Danielle Sliva³, Borjan Gagoski¹, Jennifer Vaughn⁴, Lilla Zollei⁵, Rashidul Haque⁶, Shahria Hafiz Kakon⁶, Nazrul Islam⁷, William Petri⁸, Charles Nelson¹, Nadine Gaab¹

¹Boston Children's Hospital/Harvard Medical School, ²Boston Children's Hospital, ³Brown University, ⁴Harvard Medical School, ⁵Massachusetts General Hospital, ⁶The International Centre for Diarrhoeal Disease Research, ⁷National Institute of Neuroscience, ⁸University of Virginia

2-I-46 Insular resting state functional connectivity: Associations with age, internalizing, and externalizing behaviors in adolescence

Hannah Weiss¹, Paul Collins¹, Sandra Thijssen¹, Monica Luciana¹

¹University of Minnesota-Twin Cities

2-I-47 Modes of functional development in adolescence

Finnegan Calabro¹, Brenden Tervo-Clemmens¹, Beatriz Luna¹

¹University of Pittsburgh

2-I-48 A systematic exploration of the long-term reliability of monetary gain and loss activation

David Baranger¹, Melissa Nance¹, Daniel Shaw¹, Erika Forbes¹

¹University of Pittsburgh

2-I-49 Prenatal Maternal Immune Activation is associated with brain microstructural tissue organization in neonates

Marisa Spann¹, Catherine Monk¹, Ravi Bansal², Bradley Peterson²

¹Columbia University, ²University of Southern California

2-J-50 Effect of age and gonadal hormones on risk-taking and impulsivity in gender dysphoric youth

Roberto French¹, Whitney Mattson¹, Michele Morningstar¹, Scott Leibowitz², Leena Nahata¹, Eric Nelson¹

¹The Research Institute at Nationwide Children's Hospital, ²Nationwide Children's Hospital

2-J-51 Changes in GABA and Glutamate underlying improvements in planning ability through adolescence

Maria Perica¹, Finnegan Calabro¹, Will Foran², Victor Yushmanov², Hoby Hetherington², Beatriz Luna¹

 $^1 \textsc{University}$ of Pittsburgh, $^2 \textsc{University}$ of Pittsburgh Medical Center

2-J-52 Contributions of changes in frontal GABA/ glutamate levels to emotion processing through adolescence.

Orma Ravindranath¹, Finnegan Calabro¹, Will Foran¹, Hoby Hetherington¹, Victor Yushmanov¹, Beatriz Luna¹ ¹University of Pittsburgh

2-J-53 Developing to disperse: age-dependent movement, risk taking, and object investigation of wild mice in novel spaces

George Prounis¹, Linda Wilbrecht¹

¹UC Berkeley

2-J-54 Longitudinal development of basal ganglia tissue-iron concentration in adolescence

Bart Larsen¹, Tyler Moore¹, Russell Shinohara¹, Mark Elliott¹, Kosha Ruparel¹, Azeez Adebimpe¹, Josiane Bourque¹, Monica Calkins¹, Ruben Gur¹, Raquel Gur¹, Paul Moberg¹, Adrian Raine¹, Bruce Turetsky¹, Simon Vandekar¹, Daniel Wolf¹, David Roalf¹, Theodore Satterthwaite¹

¹University of Pennsylvania

2-K-55 Using multivoxel pattern analysis to determine test-retest reliability of neural representations in response to food cues in children

Alaina Pearce¹, Bari Fuchs¹, Travis Masterson¹, Maria Bermudez¹, Eleanor Brian¹, Kathleen Keller¹

¹Pennsylvania State University

2-K-56 Test-retest reliability of neural responses to visual food cues in children

Bari Fuchs¹, Alaina Pearce¹, Travis Masterson¹, Maria Bermudez¹, Eleanor Brian¹, Kathleen Keller¹

¹The Pennsylvania State University

2-K-57 Mathematical modeling of the go/no-go task informs prospective prediction of substance use in emerging adulthood by clarifying the task's mechanistic neural correlates

Alexander Weigard¹, Sarah Brislin¹, Lora Cope¹, Jillian Hardee¹, Meghan Martz¹, Chandra Sripada¹, Mary Heitzeg¹ ¹University of Michigan

2-K-59 Examining neural similarity between live peer interaction and mentalizing

Junaid Merchant¹, Diana Alkire¹, Sarah Dziura¹, Kathryn McNaughton¹, Elizabeth Redcay¹ ¹University of Maryland

2-K-60 Reliability in clustering solutions derived from resting state fMRI: Insights from the Human Connectome Project.

Ethan McCormick¹, Eva Telzer¹, Kathleen Gates¹ ¹University of North Carolina at Chapel Hill

2-L-61 Posterior fossa arachnoid cyst in pediatric population is associated with social perception and cortical functioning abnormalities

Elza Rechtman¹, Stephanie Puget², Ana Saitovitch², Hervé Lemaitre², Jean-Marc Tacchella², Jennifer Boisgontier², Marie-Laure Cuny², Nathalie Boddaert², Monica Zilbovicius²

¹Icahn School of Medicine at Mount Sinai, ²University René Descart

2-L-62 Information sharing between autistic and neurotypical people

Catherine Crompton¹, Danielle Ropar², Claire Evans-Williams³, Emma Flynn⁴, Sue Fletcher-Watson¹

¹University of Edinburgh, ²University of Nottingham, ³The Autism Academy UK, ⁴University of Durham

2-L-64 Borderline personality and perceived trustworthiness of others modulates learning mechanisms in social trust exchange

Alison Schreiber¹, Alexandre Dombrovski², Polina Vanyukov², Michael Hallquist¹

¹Pennsylvania State University, ²University of Pittsburgh

2-L-65 Developmental trajectories of impaired response control are distinct in boys and girls with ADHD

Keri Rosch¹, Karen Seymour¹, Yi Zhao², Carolyn Koch³, Alyssa Tiedemann¹, Stewart Mostofsky¹

¹Kennedy Krieger Institute, Johns Hopkins University,
 ²Johns Hopkins University School of Public Health,
 ³Kennedy Krieger Institute

2-L-66 Mapping neural correlates to biological motion in school-aged children with Autism using high density diffuse optical tomography

Alexandra Svoboda¹, Adam Eggebrecht¹ ¹Washington University in St. Louis

2-L-67 Investigating the stability of differences in social cognition related to preterm birth through early childhood

Bethan Dean¹, Lorna Ginnell¹, Emma Telford, Sue Fletcher-Watson¹, James Boardman¹ ¹University of Edinburgh

2-L-68 Shape of gesture learning curve predicts praxis and social function in autism

Yi Zhao², Brian Caffo², Stewart Mostofsky¹, Joshua Ewen¹ ¹Kennedy Krieger Institute, ²Johns Hopkins Bloomberg School of Public Health

2-L-69 Interoceptive associations in early onset addiction to smoked cocaine

Laura Alethia de la Fuente¹, Lucas Sedeño², Sofia Schurmann¹, Camila Ellmann¹, Silvina Sonzogni³, Teresa Torralvaa¹, Eduardo T. Cánepa³, Enzo Tagliazucchi⁴, Agustín Ibañez¹, Marcelo Cetkovitch¹

¹INCyT-INECO-LPEN, ²LPEN, ³Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos A, ⁴University of Buenos Aires

2-L-70 Behavioural and mental health problems in children struggling at school: An application of the strengths and difficulties questionnaire

Jacalyn Guy¹, Annie Bryant², CALM Team¹, Joni Holmes¹ ¹University of Cambridge, ²University of East Anglia

2-L-71 Global memory impairments and hyperactivation of affective and motivational systems for successfully-encoded social stimuli in children with ASD

Ahmad Al-Zughoul¹, Lang Chen¹, Shaozheng Qin¹, Vinod Menon¹

¹Stanford Cognitive & Systems Neuroscience Laboratory

2-L-72 Cortisol stress response, right amygdala volume, and depressive symptoms in preschool age children.

Carina Fowler¹, Michael Gaffrey¹

¹Duke University

2-L-73 Gray matter density patterns in the prefrontal cortex predict irritability scores

M. Catalina Camacho¹, Helmet Karim¹, Laura Quinones-Camacho¹, Lauren Wakschlag², Susan Perlman¹

¹University of Pittsburgh, ²Northwestern University

2-L-74 Reduced longitudinal growth of the cerebellum is associated with greater symptom severity in pre-school children with ADHD

Rebecca Rochowiak¹, Yi Zhao², Stewart Mostofsky¹, Mark Mahone¹, Deana Crocetti¹

 $^{1}\mbox{Kennedy}$ Krieger Institute, $^{2}\mbox{Johns}$ Hopkins School of Public Health

2-L-75 Functional connectivity between the default mode and task positive networks is associated with failures

Kelly Duffy¹, Keri Shiels Rosch², Mary Beth Nebel², Karen Seymour², Stewart Mostofsky², Jessica Cohen¹

 $^1 \text{University}$ of North Carolina at Chapel Hill, $^2 \text{Johns}$ Hopkins University School of Medicine

2-L-76 Salience network co-cativation patterns in children with autism spectrum disorder

Jason Nomi¹, Emily Marshall¹, Bryce Dirks¹, Celia Romero¹, Willa Voorhies¹, Meghan Parlade¹, Michael Alessandri¹, Lucina Uddin¹

¹University of Miami

2-L-77 Anomalous relationship between sensorimotor GABA levels and task-dependent cortical excitability in children with Attention-deficit/hyperactivity disorder

Nicolaas Puts¹, David Huddlestone², Paul Horn², Deana Crocetti³, Kim Cecil², Richard Edden⁴, Donald Gilbert², Stewart Mostofsky³, Ashley Harris⁵

¹The Johns Hopkins University School of Medicine, ²Cincinnati Children's Hospital Medical Center and University of Cincinnati, ³Kennedy Krieger Institute, ⁴Johns Hopkins University, ⁵Alberta Children's Hospital Research Institute, University of Calgary

2-L-78 Higher levels of inflammatory cytokines are associated with reduced white matter organization in depressed adolescents

Lucinda Sisk¹, Artenisa Kulla¹, Yael Rosenberg-Hasson¹, Holden Maecker¹, Ian Gotlib¹, Tiffany Ho¹

¹Stanford University

2-L-79 Preliminary validation of automated computervision methods for assessing motor imitation during dance videogame task in children with autism

Bahar Tuncgenc¹, Rebecca Rochowiak¹, Carolina Pacheco¹, Ajay Pillai¹, Efi Mavroudi¹, Deana Crocetti¹, Sundararaman Rengarajan¹, Brice Messenger¹, Gillian Miller¹, Rene Vidal¹, Stewart Mostofsky¹, Rosemary Nicholas²

¹Johns Hopkins University, ²Nottingham University

2-L-80 Testosterone-cortoisol ration, cortico-amygdalar structural covariance and cognition

Ji Min Lew¹, Andree-Anne Bouvette-Turcot¹, Isobel Orfi, Charlotte Little, Kelly Botteron², Simon Ducharme¹, James McCracken³, Tuong-Vi Nguyen¹

¹McGill University, ²Washington University School of Medicine, ³University of California in Los Angeles

2-M-81 Mapping visual attention to levels of inhibitory control: A mobile eye tracking investigation

Kelley Gunther¹, Xiaoxue Fu², Leigha MacNeill¹, Briana Ermanni¹, Kristin Buss¹, Koraly Pérez-Edgar¹

 $^{1}\mbox{The Pennsylvania State University, $^{2}\mbox{Nationwide Children's Hospital}$$

2-M-82 Error-related activity and attention difficulties in children

Mary Abbe Roe¹, Laura Engelhardt¹, Tehila Nugiel¹, Mackenzie Mitchell¹, Jenifer Juranek², K. Paige Harden¹, Elliot Tucker-Drob¹, Jessica Church¹

¹University of Texas at Austin, ²The University of Texas Health Science Center at Houston

2-M-83 Naturalistic social attention across a dynamic social interaction

Alicia Vallorani¹, Kayla Brown¹, Xiaoxue Fu², Kelley Gunther¹, Leigha MacNeill¹, Briana Ermanni¹, Kristin Buss¹, Koraly Dr. Pérez-Edgar¹

 $^{1}\mbox{The Pennsylvania State University, $^{2}\mbox{Nationwide Children's Hospital}$$

2-M-84 The self-reference effect in adolescence

Madeleine Moses-Payne¹, Sarah-Jayne Blakemore¹ ¹University College London

2-M-85 The relation between environmental stress and attention to emotion in parents living across three demographically different locations

Denise Oleas¹, Jessica Burris¹, Michell Sarquez¹, Koraly Perez-Edgar², Kristin Buss², Vanessa LoBue¹ ¹Rutgers University, ²Pennsylvania State University

2-M-87 Stability of attention from infancy to early childhood in the preterm infant

Noémie Pauwels¹, Lorna Ginnell¹, Emma Telford¹, James Boardman¹, Sue Fletcher-Watson¹

¹University of Edinburgh

2-N-89 Investigating the relationship between bilingualism and perspective taking skills in adulthood

Berengere Digard¹, Sue Fletcher-Watson¹, Antonella Sorace¹, Andrew Stanfield¹

¹University of Edinburgh

2-N-90 The role of gamma in successful word learning in elementary school-aged children

Tina Melamed¹, Yvonne Ralph¹, Mandy Maguire¹ ¹University of Texas at Dallas

2-N-91 Independent and interacting effects of socioeconomic status and bilingualism on infant EEG during the first year of life

Shaina Brady¹, Sonya Troller-Renfree¹, Natalie Brito², Kimberly Noble¹

¹Teachers College, Columbia, ²New York University

2-N-92 Reduced cortical thickness in the left superior temporal cortex in the neonatal period is associated with poorer receptive language abilities at 22 months in children with Congenital Heart Disease.

Alexandra Bonthrone¹, Andrew Chew¹, Christopher Kelly¹, Lucilio Cordero-Grande¹, Emer Hughes¹, Kuberan Pushparajah², Joseph Hajnal¹, John Simpson², Suresh Victor¹, Camilla O'Keeffe¹, Jacqueline Brandon¹, Chiara Nosarti¹, A. David Edwards¹, Mary Rutherford

¹King's College London, ²Evelina London Children's Hospital

2-0-93 Physiological evidence that excessive overflow movement in ADHD is due to motor system immaturity

Jack Adamek¹, Danielle McAuliffe², Stewart Mostofsky¹, Joshua Ewen¹

¹Kennedy Krieger Institute, ²Temple University

2-0-94 Dynamic neural correlates of fear conditioning in children exposed to trauma and associations with psychopathology

Stephanie DeCross¹, Katie McLaughlin¹ ¹Harvard University

2-0-96 Neural correlates of social influence on preferences in adolescents

Joseph Venticinque¹, Rajpreet Chahal¹, Sarah Beard¹, Amanda Guyer¹

¹University of California, Davis

2-0-97 Increased DLPFC activation across childhood is related to decreased aggression following negative social feedback

Michelle Achterberg¹, Anna van Duijvenvoorde¹, Marian Bakermans-Kranenburg², Marinus van IJzendoorn³, Eveline Crone¹

¹Leiden University, ²VU Amsterdam, ³Erasmus University

2-0-98 Self-evaluative neural associations with inflammation and depression

¹Michelle Byrne¹, Nicholas Allen¹, Jennifer Pfeifer¹ ¹University of Oregon

2-0-99 Atypical functional coupling between the amygdala and prefrontal regions during recognition of a broad range of emotions links traumatic violence and externalizing problems in adolescence

Charlotte Heleniak¹, Kelly Sambrook², Katie McLaughlin³

 $^{1}\mbox{Columbia}$ University, $^{2}\mbox{University}$ of Washington, $^{3}\mbox{Harvard}$ University

2-0-100 Association between internalizing symptoms and substance use from early to late adolescence: The moderating role of neural response to social exculsion

Sarah Beard¹, Rajpreet Chahal¹, Joseph Venticinque¹, Paul Hastings¹, Richard Robins¹, Amanda Guyer¹

¹University of California, Davis

2-0-101 Brain activation during arithmetic in children with combined math and reading disability: The presence of reading disability modulates activity in the bilateral superior parietal lobules

Anna Matejko¹, Melanie Lozano¹, Sikoya Ashburn¹, Guinevere Eden¹

¹Georgetown University

2-0-102 Individual differences in human frontoparietal plasticity

Austin Boroshok¹, Gerardo Velasquez¹, Anne Park¹, Katrina Simon², Jasmine Forde¹, Emily Cooper³, Allyson Mackey¹

¹University of Pennsylvania, ²Columbia University, ³University of California, Berkeley

2-0-103 Real-life influences on the development of adolescent trust

Hester Sijtsma¹, Mariët van Buuren¹, Nikki Lee¹, Lydia Krabbendam¹

¹Vrije Universiteit Amsterdam

2-0-104 Neural effects of autonomous choice on appetitive self-regulation during the transition to college

Danielle Cosme¹, Arian Mobasser¹, Garrett Ross¹, Dagmar Zeithamova¹, Elliot Berkman¹, Jennifer Pfeifer¹ ¹University of Oregon

2-0-105 Contributions of cumulative parent cortisol, language in the home, and socioeconomic status to 3-month infant baseline EEG power

Annie Brandes-Aitken¹, Stephen Braren¹, Ashley Greaves¹, Rosemarie Perry¹, Natalie Brito¹

¹New York University

2-0-106 Neural networks supporting long-term memory guided and cued attention in children: Associations in socioeconomic status

Maya Rosen¹, Kelly Sambrook¹, Andrew Meltzoff¹, Katie McLaughlin²

¹University of Washington, ²Harvard University

2-0-107 Associations between brain function and cortisol reactivity during a stress task

Max Herzberg¹, Ruskin Hunt¹, Megan Gunnar¹, Kathleen Thomas¹

¹University of Minnesota

2-0-108 The role of gonadal hormone administration on social anxiety and amygdala response to threat faces in transgender youth

Connor Grannis¹, Michele Morningstar¹, Whitney Mattson¹, Scott Leibowitz¹, Leena Nahata¹, Eric Nelson¹

¹The Research Institute at Nationwide Children's Hospital

2-0-110 Neurocognitive development of inhibitory control and substance use vulnerability

Alina Quach¹, Brenden Tervo-Clemmens¹, William Foran¹, Finnegan Calabro¹, Duncan Clark¹, Beatriz Luna¹

¹University of Pittsburgh

2-O-111 Examination of developmental effects of mirror overflow and speed during sequential finger tapping in children with and without ADHD

Christine Chen¹, Deana Crocetti¹, Yi Zhao², E. Mark Mahone¹, Stewart Mostofsky¹

¹Kennedy Krieger Institute, ²Johns Hopkins Bloomberg School of Public Health

2-P-112 Functional connectivity at rest is similar across youths and adults and varies with genetic similarity

Damion Demeter¹, Laura Engelhardt¹, Remington Mallett¹, Evan Gordon², Tehila Nugiel¹, Jenifer Juranek³, K. Paige Harden¹, Elliot Tucker-Drob¹, Jarrod Lewis-Peacock¹, Jessica Church¹

 1 University of Texas at Austin, 2 VISN 17 Center of Excellence for Research on Returning War Veterans, 3 University of Texas Health Science Center at Houston

2-P-113 EEG connectivity as a biomarker for predicting schizophrenia based on machine learning

Yu Luo¹, Jicong Zhang¹ ¹Beihang University

2-P-114 Associations between infant reactivity and resting state functional connectivity

Sanjana Ravi¹, Courtney Filippi¹, Chad Sylvester², Daniel Pine³, Nathan Fox¹

¹University of Maryland College Park, ²Washington University School of Medicine, ³National Institute of Mental Health

2-P-115 Altered cortico-cerebellar connectivity in 6-week-old infants at high risk for ASD

Nana Okada¹, Janelle Liu¹, Tawny Tsang², Shulamite Green¹, Shafali Jeste¹, Susan Bookheimer¹, Mirella Dapretto¹

¹University of California, Los Angeles, ²Yale University

2-P-116 Bilateral frontal aslant tract development and its relation to inhibitory control in 4- to 7-year old children

Dea Garic¹, Diana Behar¹, Armando Torres¹, Rina Badran¹, Valentina Linocci¹, Hector Borges¹, Paulo Graziano¹, Anthony Dick¹

¹Florida International University

2-P-118 Functional development of the social brain in middle childhood

Diana Alkire¹, Yaqiong Xiao², Dustin Moraczewski¹, Elizabeth Redcay¹

¹University of Maryland, ²University of California, San Diego

2-P-122 Early-life dentine manganese concentrations and intrinsic functional brain connectivity in adolescents and young adults

Erik de Water¹, Demetrios Papazaharias¹, Claudia Ambrosi², Lorella Mascaro², Yuri Levin-Schwartz¹, Elza Rechtman¹, Giuseppa Cagna³, Daniele Corbo³, Roberto Gasparotti³, Roberto Lucchini¹, Manuela Oppini³, Donatella Placidi³, Christine Austin¹, Manish Aror⁴

¹Icahn School of Medicine at Mount Sinai, ²ASST Spedali Civili Hospital, ³University of Brescia, ⁴UC Santa Cruz

2-P-123 Gender effects in the relationship between parenting and resting-state functional connectivity in the ABCD Study

Kara Kerr¹, Hannah Kim², Florence Breslin³, Kelly Cosgrove⁴, Henning Tiemeier², Martin Paulus³, Amanda Morris¹

¹Oklahoma State University, ²Harvard TH Chan School of Public Health, ³Laureate Institute for Brain Research, ⁴University of Tulsa

2-P-124 Regulatory ability in infancy mediates the association between newborn amygdala connectivity and future internalizing symptomology

Elina Thomas¹, Claudia Buss², Dakota Ortega¹, Julian Ramirez¹, Jerod Rasmussen², Marc Rudolph³, Pathik Wadhwa², Sonja Entringer², John Gilmore⁴, Martin Styner⁴, Damien Fair¹, Alice Graham¹

¹Oregon Health and Science University, ²University of California, Irvine, ³University of North Carolina, ⁴University of North Carolina at Chapel Hill

2-P-125 Stress exposure in early childhood relates to altered midbrain functional connectivity

Anne Park¹, Julia Leonard¹, Allyson Mackey¹

¹University of Pennsylvania

2-P-126 A history of maternal childhood maltreatment is associated with neonatal amygdala and hippocampal resting state functional connectivity

Mollie Marr¹, Alice Graham¹, Eric Feczko¹, David Ball¹, Emma Schifsky¹, Darrick Sturgeon¹, Jerod Rasmussen², Martin Styner³, Sonja Entringer³, Pathik Wadhwa², Damien Fair¹, Claudia Buss⁴

¹Oregon Health & Science University, ²University of California, Irvine, ³University of North Carolina, ⁴Charité University of Medicine

2-P-127 Developmental variations in corticostriatal thalamocortical circuits and their relationship to psychopathology

Aki Nikolaidis¹, Yu Tong¹, Michael Milham¹ ¹Child Mind Institute

2-P-128 Functional brain network development during early childhood

Ursula Tooley¹, Anne Park¹, Julia Leonard¹, Danielle Bassett¹, Allyson Mackey¹

¹University of Pennsylvania

2-P-129 Functional subdivisions of the hippocampus defined in individuals

Annie Zheng¹, Scott Marek¹, Timothy Laumann¹, Evan Gordon², Adrian Gilmore³, Steven Nelson², Gagan Wig⁴, Joshua Shimony¹, Dimitrios Alexopoulos¹, Mario Ortega¹, Deanna Greene¹, Nico Dosenbach¹

¹Washington University School of Medicine, ²Doris Miller VA Medical Center, ³National Institute of Mental Health, ⁴University of Texas at Dallas

2-P-130 The human coparental bond implicates distinct corticostriatal pathways: Longitudinal impact on family formation and child well-being

Eyal Abraham¹

¹New York University

2-P-131 A multisample, multimethod study of connectivity mechanisms linking pubertal development and depression in adolescence

Rajpreet Chahal¹, Scott Marek², Weissman David³, Veronika Vilgis¹, Paul Hastings⁴, Richard Robins⁴, Kate Keenan⁵, Erika Forbes⁶, Alison Hipwell⁶, Amanda Guyer¹

¹Center for Mind and Brain, UC Davis, ²Washington University in St. Louis, ³Harvard, ⁴University of California Davis, ⁵The University of Chicago, ⁶University of Pittsburgh

2-P-132 Covariance regression as a method to investigate age, ADHD, and overflow-related changes in resting-state functional connectivity

Yi Zhao¹, Mary Beth Nebel¹, Keri Rosch¹, Stewart Mostofsky¹, Brian Caffo¹

¹Johns Hopkins University

2-P-134 Social cognition deficits associated with psychotic-like experiences and functional dysconnectivity in salience and cognitive control networks in adolescence

Eva Mennigen¹, Dietsje Jolles², Katherine Karlsgodt¹, Carrie Bearden¹

¹University of California, Los Angeles, ²Leiden University

2-P-135 Association of default mode network functional and structural connectivity with social responsiveness in autism

Bryce Dirks¹, Jason Nomi², Willa Voorhies³, Meaghan Parlade¹, Michael Alessandri¹, Lucina Uddin²

¹University of Miami, ²University of Miami, ³University of California Berkeley

2-P-136 PTSD- and IPT-related differences in intrinsic connectivity in a pilot sample of female adolescent survivors of sexual assault with PTSD

Tamara Sussman¹, Jonathan Posner¹, Marcelo Feijó Mello², Andrea Parolin Jackowski², Adriana Correa², Ana Carolina Coelho Milani²

 $^1 \mbox{Columbia}$ University Medical Center / NYSPI, $^2 \mbox{Universidade}$ Federal de São Paulo

2-P-137 Underconnectivity between the rostral prefrontal cortex and sensorimotor cortex associated with better fine motor skills in toddler with autism spectrum disorders

Cynthia Ibarra¹, Annika Linke¹, Bosi Chen¹, Lindsay Olson¹, Sarah Reynolds¹, Mikaela Kinnear¹, Inna Fishman¹

¹San Diego State University

2-P-138 Salience network connectivity relates differently to sensory over-responsivity in males vs. females with autism spectrum disorder

Kaitlin Cummings¹, Emily Wood¹, Susan Bookheimer¹, Mirella Dapretto¹, Shulamite Green¹ ¹UCLA

2-P-139 Distinct forms of childhood adversity are associated with differential patterns of intrinsic connectivity in reward-related neural networks

Steven Kasparek¹, Kelly Sambrook², Stephanie DeCross¹, Maya Rosen¹, Katie McLaughlin¹

¹Harvard University, ²University of Washington

2-P-140 Effects of methylphenidate on response control and intrinsic whole-brain functional network organization in children with attention-deficit/hyperactivity disorder

Kelly Eom¹, Shana Hall¹, Laura Politte¹, Margaret Sheridan¹, Jessica Cohen¹

¹University of North Carolina at Chapel Hill

2-P-141 Top-down modulation of sensory cortex in the developing human brain

Yaelan Jung¹, Amy Finn¹ ¹University of Toronto

2-P-142 Sleepy, Disconnected, and Inattentive: ADHD symptoms in children reflect greater behavioral vulnerability to partial sleep deprivation through compromised brain connectivity

Jared Saletin¹, Gabriela de Queiroz Campos², M. Elisabeth Koopman-Verhoeff¹, Silvia Bunge³, Daniel Dickstein¹, Mary Carskadon¹

¹Alpert Medical School of Brown University, ²E.P. Bradley Hospital, ³University of California, Berkeley

2-P-143 Identifying reproducible individual differences in childhood functional brain networks: An ABCD study

Scott Marek^{1†}, Brenden Tervo-Clemmens^{2†}

Ashley N. Nielsen³, Muriah D. Wheelock¹, Ryland L. Miller¹, Timothy O. Laumann¹, Eric Earl⁵, William W. Foran⁴, Michaela Cordova⁵, Olivia Doyle⁵, Anders Perrone⁵, Oscar Miranda-Dominguez⁵, Eric Feczko⁵, Darrick Sturgeon⁵, Alice Graham⁵, Robert Hermosillo⁵, Kathy Snider⁵, Anthony Galassi⁵, Bonnie J. Nagel⁵, Sarah W. Feldstein Ewing⁵, Adam T. Eggebrecht¹, Hugh Garavan⁶, Anders M. Dale¹, Deanna J. Greene¹, Deanna M. Barch¹, Damien A. Fair⁵, Beatriz Luna⁴, Nico U.F. Dosenbach¹

¹Washington University in St. Louis, ²University of Pittsburgh, ³Northwestern University, ⁴University of Pittsburgh, ⁵Oregon Health and Science University, ⁶University of Vermont

[†]*These authors contributed equally to this work.*

2-S-144 Brain plasticity in childhood: How can individual differences in change trajectories inform real-life learning?

Diana Alkire¹, Yana Fandakova¹, Corinna Laube¹, Neda Khosravani¹, Silvia A. Bunge², Ulman Lindenberger^{1,3}

¹Max Planck Institute for Human Development, ²University of California at Berkeley, ³Max Planck UCL Center for Computational Psychiatry and Ageing Research

2-S-145 Using portable neurotechnologies (fNIRS, EEG) for more naturalistic developmental cognitive neuroscience research

Nienke van Atteveldt¹, Chiara Bulgarelli², Ido Davidesco³, Suzanne Dikker⁴, Tieme Janssen¹, Eliana Vassena⁵, Argiro Vatakis⁶, Elana Zion-Golumbic⁷, Roma Siugzdaite⁸

¹Vrije Universiteit Amsterdam, ²Birkbeck University of London, ³New York University, ⁴Utrecht University, ⁵Radboud University, ⁶CSRI-Cognitive Systems Research Institute, ⁷Bar-Ilan University, ⁸Cambridge University

2-S-146 Lost in translation: How does neuroimaging contribute to understanding development in everyday diverse environments

Paul Matusz¹, Yana Fandakova², Lucía Magis-Weinberg³, Bruce McCandliss⁴

¹University of Applied Sciences Western Switzerland (HES-SO) Valaism, ²Max Planck Institute for Human Development, ³University of California, Berkeley, ⁴Stanford University

2-S-147 How can developmental cognitive neuroscience inform school-based interventions to foster healthy digital habits in very young adolescents?

Lucía Magis-Weinberg¹, Lucía Magis-Weinberg², Estelle Berger¹, Ron Dahl¹

¹University of California, Berkeley

2-S-148 Flexibility, adaptation and the two-language dilemma: Advantage, disadvantage or neither

Arturo Hernandez¹, Ioulia Kovelman², Maria Arrendondo³, Swathi Kiran⁴,

¹University of Houston, ²University of Michigan, ³University of British Columbia, ⁴Boston University

2-S-149 The bilingual reading brain: Cross-linguistic influences on children's literacy

Ioulia Kovelman¹

¹University of Michigan

2-S-150 Does bilingualism alter attentional shifting in the developing infant brain?

Maria M. Arredondo¹, Richard N. Aslin², Janet F. Werker³ ¹University of Michigan, ²Yale University, ³University of British Columbia

2-S-150 BiLex: A neural-network model of the bilingual lexicon

Uli Grasemann¹, Claudia Penaloza², Maria Dekhtyar², Risto Miikkulainen¹, Swathi Kiran²

¹The University of Texas at Austin, ²Boston University

Flux Congress Sponsors

Jacobs Foundation

Sponsor of Science of Learning Symposium

The Jacobs Foundation supports research and intervention projects leading to significant outcomes for children and youth all over the world. Within our research priority Science of Learning, we explore the biological bases of skill acquisition and development of children and youth and their consequences for learning environments and institutions.

jacobsfoundation.org

Bezos Family Foundation

Sponsor of Flux Dissertation Award

The Bezos Family Foundation believes children are born with potential and deserve the experiences and environments needed to learn and thrive. Our programs and funding are guided by the science of learning and aim to transform how we support all young people—especially those furthest from opportunity—to pursue their own path for success. Learn more at:

bezosfamilyfoundation.org

Kennedy Krieger Institute

Sponsor of Young Investigator Award

Kennedy Krieger Institute is a non-profit, internationally recognized specialty pediatric healthcare, education, research and related services provider whose mission is to improve the lives of the more than 24,000 children and adolescents with disorders and injuries of the brain, spinal cord, and musculoskeletal system they serve each year.

With locations throughout the Baltimore-Washington region, and welcoming children from nearby and around the world, Kennedy Krieger Institute helps children and their families through interdisciplinary inpatient and outpatient care, novel research, home and community services, training for current and future professionals and specialized school-based programs.

From autism to traumatic stress, brain injuries to rare neurological disorders like leukodystrophies and Kabuki syndrome, the people who comprise the Institute are committed to changing the trajectories of young lives through innovation, commitment, compassion and expertise.

KennedyKrieger.org

Child Mind Institute

The Child Mind Institute is an independent, national nonprofit dedicated to transforming the lives of children and families struggling with mental health and learning disorders. **childmind.org**

Weill Cornell Medical Psychiatry

Weill Cornell Medicine's Department of Psychiatry is one of the most long-standing and prestigious academic psychiatry programs in the country. Our mission is to provide exceptional, patient-centered care for patients and families; the finest education for clinicians and researchers; and engage in cutting-edge research and scholarship to advance the field. Through our affiliation with NewYork-Presbyterian Hospital, we have one of the largest clinical programs in the country that is consistently ranked among the nation's best, and is considered a premier program in the New York metropolitan area.

psychiatry.weill.cornell.edu

Flux Congress Sponsors

COLUMBIA UNIVERSITY DEPARTMENT OF PSYCHIATRY

Columbia Psychiatry

The Columbia University Department of Psychiatry is among the top-ranked in the nation for Psychiatry in the US News & World Report Best Hospital rankings, as well as in psychiatric research funding from the National Institutes of Health. Faculty includes over 400 psychiatrists, psychologists, social workers, nurses, and neurobehavioral scientists. Clinical facilities and laboratories of the Psychiatry Department are located in a large number of institutions and healthcare systems, including NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, the New York State Psychiatric Institute, the New York State Office of Mental Health, and the Washington Heights Community Mental Health Center. The Department of Psychiatry also houses the Center for Neurobiology and Behavior, the Mind/Brain Institute, a Howard Hughes Research Institute and the Stanley Center for Applied Neuroscience of Bipolar Disorders.

Providing clinical services in programs operated through the ColumbiaDoctors faculty practice, New York-Presbyterian Hospital, and the New York State Psychiatric Institute, Columbia University Department of Psychiatry provides the full range of psychiatric treatment for a variety of mental health conditions across both office-based and hospital-based settings. Clinical faculty includes over 175 psychiatrists and therapists that provide over 80,000 visits to adults and children annually, and hospital-based programs provide over 2000 annual admissions across two sites. columbiapsychiatry.org

NYU Langone Health

NYU Langone Health is a world-class, patient-centered, integrated academic medical center, known for its excellence in clinical care, research, and education. Included in the 200+ locations throughout the New York area are six inpatient locations: Tisch Hospital, its flagship acute-care facility; Kimmel Pavilion, its state-of-the-art healthcare facility, opened in 2018; Rusk Rehabilitation, ranked as one of the top 10 rehabilitation programs in the country; NYU Langone Orthopedic Hospital, a dedicated inpatient orthopedic hospital with all musculoskeletal specialties ranked top 10 in the country; Hassenfeld Children's Hospital at NYU Langone, a comprehensive pediatric hospital supporting a full array of children's health services; and NYU Langone Hospital—Brooklyn, a full-service teaching hospital and level 1 trauma center located in Sunset Park, Brooklyn. Also part of NYU Langone Health is the Laura and Isaac Perlmutter Cancer Center, a National Cancer Institute-designated cancer center, and NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. For more information, go to nyulangone.org, and interact with us on Facebook, Twitter, YouTube, and Instagram.

Elsevier **Developmental** Cognitive

Neuroscience

Sponsor of the Poster Sessions

Just as the tools used in scientific research are changing, so too are the tools used in scientific communication. Elsevier has taken a leadership role in advancing the technologies necessary to create a seamless electronic information delivery environment. elsevier.ca

Montefiore Medical Center

At the Isabelle Rapin Division of Child Neurology of the Saul R. Korey Department of Neurology at the Einstein College of Medicine/Montefiore Medical Center we have pioneered research in conditions associated with developmental cognitive dysfunction such as epilepsy, movement disorders and autism. Major advantages are the availability of unique populations at Montefiore Medical Center and the close relationships and interactions of the clinical faculty with the Einstein based Neuroscience Community where we have developed state of the art basic science programs ripen for translational research to improve the welfare of our children with developmental cognitive dysfunction. We have developed programs to Identify target mechanisms and biomarkers for the development, translation, and implementation of novel therapies using a combination of neurophysiological, imaging, behavioral, and molecular biology technologies. Gene-network interactions with age, sex, and environmental and epigenetic factors are also investigated to explain the individual phenotypes and build the knowledge base to support personalized medicine. The importance of these strategic programs is underscored by the increasing awareness of the scope, complexity, socioeconomic impact and persistent societal stigma associated with disorders of developmental cognitive dysfunction. Our primary mission is to provide the highest quality of care to our patients and families. We all know how important it is that patients trust their doctors, nurses and other healthcare professionals. They also must trust our organization and believe that everyone who works here respects and obeys the law and adheres to the highest standards of professional and ethical conduct.

montefiore.org

Flux Congress Sponsors

Brain Vision Sales

Brain Vision LLC offers cutting-edge research solutions for neurophysiological research including EEG, tES, TMS, EEG/fMRI, fNIRS, and more. We integrate EEG with fMRI, fNIRS, TMS, tDCS/tACS, MEG, and eye-tracking. Our solutions are offered for research on infants and adults that include wired and wireless systems with passive, active, or dry electrodes and are ideal for applications including BCI, neuromodulation, neurofeedback, and real-time analyses.

Brain Vision LLC's Scientific Consultant team comprises research scientists from the neuroscience field who have a thorough understanding of current experimental needs. Come visit our booth to discuss your ideal solution with us!

brainvision.com

Department of Psychology / Columbia University in the City of New York

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Columbia University's Department of Psychology has a history of excellence. Dating back to 1890, it is one of the oldest and most influential psychology departments in the United States. In the early nineteen hundreds, the scientific approach our department took to the study of psychology was so well known, it was referred to as the Columbia school of psychology (versus behaviorism or gestalt or psychoanalytic). Remaining a relatively small department, it consistently ranks among top programs, having more renowned faculty and graduate students than programs many times its size. In keeping with our "functionalist" roots, the Columbia department of Psychology is home to several world leaders in Cognitive Neuroscience (developmental, social/affective, decision-making, memory, and computational approaches). Our faculty, who have received many of the top honors in their fields, are not only outstanding researchers but also dedicated teachers, receiving teaching awards in recognition of their contributions. Actively engaged in interdisciplinary collaboration with other departments—including biology, business management, marketing, psychiatry, and neuroscience—our faculty are leading the way to exciting new frontiers in training and research. **columbiapsychiatry.org**

NewYork-Presbyterian Youth Anxiety Center

NY Presbyterian Youth Anxiety Clinic

The Youth Anxiety Center focuses on understanding the root causes of anxiety disorders in young people and on improving and disseminating evidence-based treatments. The program is a unique research and clinical initiative with more than 30 experts from NewYork-Presbyterian, Columbia University Vagelos College of Physicians and Surgeons, and Weill Cornell Medicine working together to help young people and their families.

NIRx Medical Technologies, LLC

NIRx Medical Technologies: a global manufacturer and developer of highly-versatile functional nearinfrared spectroscopy (fNIRS) neuroimaging systems, providing researchers specialized solutions for subjects of all ages- from neonates to adults.

nirx.nety

The International Congress for Integrative Developmenta Cognitive Neuroscience

Thank you to our Sponsors

COLUMBIA COLUMBIA UNIVERSITY DEPARTMENT OF PSYCHIATRY COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Developmental Cognitive Neuroscience Journal

NewYork-Presbyterian Youth Anxiety Center

